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ABSTRACT
Plasticity from auditory experience shapes the brain's encoding and perception of sound. Though stronger neural entrainment 
(i.e., brain-to-acoustic synchronization) aids speech perception, underlying oscillatory activity may uniquely interact with 
long-term auditory experiences (i.e., music training) and short-term plasticity during concurrent speech perception. Here, 
we explored oscillatory activity during rapid auditory perceptual learning of concurrent speech sounds in normal-hearing 
young adults who differed in their amount of self-reported music training (defined as “musicians” and “nonmusicians”). 
Participants learned to identify double-vowel mixtures during ~45 min training sessions with concurrent high-density EEG 
recordings. We analyzed alpha-band power (7–12 Hz) following a rhythmic speech-stimulus train (~9 Hz) preceding behav-
ioral identification to determine whether increased (brain-to-speech entrainment) or decreased alpha activity (alpha-band 
suppression) corresponded with task success. Source and directed functional connectivity analyses of EEG data probed 
whether behavior was driven by group differences in auditory-motor coupling. Both groups improved in behavioral identi-
fication with training. Listeners' alpha-band power prior to target speech predicted behavioral identification performance; 
surprisingly, stronger alpha oscillations were observed preceding incorrect compared to correct trial responses. We also 
found stark hemispheric biases in auditory-motor coupling, with greater auditory-motor connectivity in right compared to 
left hemisphere for musicians (R > L) but not in nonmusicians (R = L). Stronger alpha activity preceding incorrect behavioral 
responses supports the notion that alpha-band (~10 Hz) suppression is an important modulator of trial-by-trial success in 
perceptual processing. Our findings suggest that neural oscillations and auditory-motor connectivity interact with music 
training to impact speech perception.

© 2025 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Abbreviations: EEG, Electroencephalography; ERP, Event-related potential; FFR, Frequency-following response; GC, Granger causality; ISI, Inter-stimulus interval; LH, Left hemisphere; 
M, Musician; NM, Nonmusician; RH, Right hemisphere.
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1   |   Introduction

Everyday listening involves complex auditory scenarios in 
which listeners must isolate information from one talker in 
the presence of other talkers and background noise. Though 
difficult, many listeners successfully navigate these types 
of “cocktail party” listening environments. In particular, an 
extensive body of literature demonstrates perceptual advan-
tages in speech-in-noise and “cocktail party” listening among 
highly-trained musicians (Bidelman and Yoo  2020; Maillard 
et al. 2023; Parbery-Clark, Skoe, and Kraus 2009; Puschmann 
et  al.  2018; Zendel and Alain  2009). Despite evidence for a 
musician speech-in-noise advantage, the exact mechanism(s) 
underlying these enhancements are still debated. Enhanced 
sensory processing (Bidelman et al. 2011; Koelsch et al. 1999; 
Strait et  al.  2010), attention (Román-Caballero et  al.  2020; 
Strait and Kraus 2011), and working memory/executive func-
tion (Kraus et al. 2012; Pallesen et al. 2010; Zuk et al. 2014) 
all might explain musicians' superior figure-ground speech 
perception abilities.

One potential mechanism that might enhance auditory per-
ception, including noise-degraded and concurrent speech 
perception, is neural entrainment. Neural entrainment, or 
the yoking of ongoing neural oscillations to external stim-
uli, plays a strong role in governing the perceptual parsing 
of speech (Vanthornhout et  al.  2018) and musical sounds 
(Doelling et al. 2019). Entraining to speech facilitates its in-
telligibility both in quiet and noise (Riecke et  al.  2018). On 
the contrary, electrophysiological studies have shown that 
poorer entrainment in clinical populations (e.g., listeners with 
auditory processing disorder) parallels behavioral deficits in 
concurrent speech listening tasks (Gilley et al. 2016; Momtaz 
et  al.  2021,  2022). Collectively, these studies suggest the ro-
bustness of the brain's neuroacoustic entrainment might play 
an important role in successfully parsing concurrent speech 
signals.

An alternative idea is that changes in intrinsic rhythmic os-
cillatory power of brain activity might underly task perfor-
mance. Increases in alpha-band (7–12 Hz) brain rhythms 
are traditionally associated with internal reflection or de-
creased attention to a given task (Klimesch 2012). Related to 
task performance, phase-related changes and suppression of 
alpha activity have been shown to predict successful speech 
intelligibility in quiet and noise (Obleser et  al.  2012; Strauß 
et  al.  2015; Weisz et  al.  2011). Cortical alpha states also in-
fluence brainstem speech encoding through dynamic fluctua-
tions in arousal and attention, and consequently, are relevant 
to speech processing at multiple stages of the auditory system 
(Lai et al. 2022). Thus, it is also possible that reduced alpha-
band activity could support improved task performance in 
speech perception tasks.

Aside from entrained or endogenous alpha activity, brain-
to-brain interactions between the auditory and motor sys-
tems might also aid the perception of “cocktail party” speech. 
Previous studies have demonstrated engagement of the motor 
system (alongside the auditory system) to enhance the neural 
representation of speech (Poeppel and Assaneo  2020; Poeppel 
and Hickok  2004). Indeed, close coordination between the 

premotor and temporal cortices is used to track various linguis-
tic elements of the speech signal spanning the syllable, word, 
and phrase levels (Assaneo and Poeppel 2018; Ding et al. 2016; 
He et al. 2023; Keitel et al. 2018). Motor engagement is particu-
larly evident under noise degradation when efference copy must 
enhance speech representations from the impoverished acoustic 
input (Du et al. 2014). Such top-down, cross-modal enhancement 
of auditory information might also be due to the ability of the 
motor system to enhance temporal predictions of sensory stim-
uli (Dick et al. 2011; Morillon and Baillet 2017). These mecha-
nisms could presumably improve degraded listening skills. One 
idea is that the enhanced auditory-motor integration necessary 
for musicians may enhance auditory-motor connectivity, thus 
enabling their more successful speech-in-noise comprehension 
(e.g., Du and Zatorre 2017).

Functional connectivity between the auditory and motor sys-
tems (i.e., the degree of coupling between regional activity) 
can directly characterize auditory-motor signaling. Germane 
to our current study, Puschmann and colleagues found that 
when attending to continuous speech in quiet, the amount 
of participants' music training positively correlated with the 
strength of alpha-band phase locking between the primary 
auditory cortex and dorsal and ventral auditory pathways, 
suggesting alpha-band entrainment to speech across the cor-
tex is influenced by music training (Puschmann et al. 2021). 
Functional connectivity enhancements associated with musi-
cianship may even align with prevention of typical age-related 
declines in speech-in-noise perception (Zhang et  al.  2024). 
In addition to connectivity strength, the direction of signal-
ing (i.e., auditory-to-motor vs. motor-to-auditory) can pro-
vide insight into “bottom up” vs. “top-down” mechanisms 
of auditory-motor involvement. Stronger connectivity in the 
auditory-to-motor direction could indicate greater reliance on 
sensory cue extraction and specific stimulus features, whereas 
stronger motor-to-auditory signaling could indicate greater re-
liance on predictive or anticipatory cues to perceive cocktail 
party speech.

In the present study, we reanalyzed EEG data collected in 
our previously published, cross-sectional study on the neu-
roplasticity of concurrent speech sound learning in musi-
cians and nonmusicians, individuals who self-reported high 
and low amounts of music training, respectively (MacLean 
et al. 2024). In that work, we found that long-term plasticity 
(e.g., musicianship) interacted with short-term perceptual 
learning (e.g., learning a task within one ~45 min session) 
in the perception of double-vowel speech stimuli. Musicians 
and nonmusicians demonstrated different neurophysiologi-
cal responses and learning trajectories which related to be-
havioral measures of speech identification. Fortuitously, our 
stimulus design included a rapid cueing speech train at the 
nominal alpha-band frequency (~10 Hz). This allowed us to 
now investigate alpha power during and after stimulus pre-
sentation to determine how the directionality in alpha activity 
predicts speech identification at the single trial level. Under 
a neural entrainment hypothesis (Riecke et al. 2018), we ex-
pected increased alpha responses phase-locked to the 10 Hz 
speech rhythm would predict better task performance. In 
contrast, the alpha suppression hypothesis predicts decreased 
alpha prior to behavioral decision should correlate with better 
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perception. In sum, our findings show that alpha-band oscil-
lations dramatically increase during incorrect but not correct 
trials (especially in musicians) and are therefore most consis-
tent with a suppression hypothesis, whereby downregulating 
alpha rhythms during perceptual processing is important for 
task success. Our findings also reveal nuanced differences in 
auditory-motor functional connectivity based on differences 
in self-reported music training.

2   |   Materials and Methods

The current study represents a new analysis of neural oscilla-
tions from the EEG data reported in MacLean et  al.  (2024). 
Evoked potential results including brainstem (frequency-
following response, FFR) and cortical (event-related potential, 
ERP) responses to speech and how they are modulated by per-
ceptual learning are reported in the companion paper (MacLean 
et al. 2024). The reader is referred to the original manuscript for 
full methodological details.

2.1   |   Participants

Twenty-seven young adults (ages 18–34; mean + SD 23.68 + 4.22; 
13 female) with normal hearing thresholds (bilateral pure tone 
averages < 25 dB HL, octave frequencies between 250 and 
8000 Hz) participated in this study. All participants were flu-
ent in American English and reported no previous neurologic 
or psychiatric disorders. Participants gave written, informed 
consent in accordance with a protocol approved by the Indiana 
University Institutional Review Board.

Participants were separated into musician (M; n = 13) and 
nonmusician (NM; n = 14) groups based on their extent of self-
reported formal music training (hereafter referred to as “mu-
sicians” and “nonmusicians”). Musicians had at least 10 years 
of self-reported formal music training starting at or before age 
12, while nonmusicians had 5 or fewer years of lifetime music 
training (Wong et  al.  2007). Groups did significantly differ in 
amount of music training (M 16.1 + 4.3 years; NM 2.4 + 1.7 years; 
t(25) = 10.93; p < 0.001) but were matched in age (t(25) = 1.58; 
p = 0.413), cognitive ability as assessed through the Montreal 
Cognitive Assessment (Nasreddine et  al.  2005) (t(25) = 1.78; 
p = 0.088), self-reported bilingualism (X2(1, N = 27) = 0.022, 
p = 0.883), sex balance (X 2(1, N = 27) = 1.78, p = 0.182), and 

handedness as assessed through the Edinburgh Handedness 
Inventory (t(25) = −0.615; p = 0.544) (Oldfield 1971).

2.2   |   Double-Vowel Stimuli and Task

Concurrent vowel stimuli were modelled after previous stud-
ies (Alain et al. 2007; Assmann and Summerfield 1989, 1990; 
Bidelman and Yellamsetty  2017). Stimuli consisted of syn-
thesized, steady-state vowels (/a/, /e/, and /i/) which were 
presented in three unique vowel combinations (i.e., /a/ + 
/e/; /e/ + /i/; /a/ + /i/). Vowels were never paired with them-
selves. Stimuli were created with a Klatt-based synthesizer 
(Klatt  1980) coded in MATLAB (v 2021; The MathWorks, 
Inc., Natick, MA). Each vowel was 100 ms in duration with 
10-ms cos2 onset/offset ramping to prevent spectral splatter. 
The fundamental frequency (F0) between vowels was 4 semi-
tones (150 and 190 Hz), which promotes segregation for most 
listeners (Assmann and Summerfield  1990; Bidelman and 
Yellamsetty  2017). F0 and the first two formant frequencies 
(F1a,e,i = 787, 583, 300 Hz; F2 a,e,i = 1307, 1753, 2805 Hz) re-
mained constant for the duration of the token.

The speech sounds were presented in rarefaction phase through 
a TDT RZ6 interface (Tucker-Davis Technologies, Alachua, FL) 
controlled via MATLAB. Stimuli were presented binaurally 
at 79 dB SPL through electromagnetically shielded (Campbell 
et  al.  2012; Price and Bidelman  2021) ER-2 insert earphones 
(Etymotic Research, Elk Grove, IL). Prior to EEG testing, we 
required all participants to identify single vowels with 100% 
accuracy. This ensured subsequent learning would be based on 
improvements in concurrent speech identification rather than 
isolated sound labeling ability.

We used a clustered stimulus paradigm (Bidelman  2015) em-
ploying interspersed fast and slow interstimulus intervals (ISIs) 
to collect speech-evoked potentials during the active perceptual 
task (Figure 1). Speech-ERP/FFR data are reported in the com-
panion paper (MacLean et al. 2024). Each trial consisted of one 
of the three vowel combinations. During a trial, 20 repetitions of 
the vowel pair were presented with a fast ISI of 10 ms to elicit the 
FFR. Thus, the corresponding stimulus onset asynchrony was 
110 ms (i.e., 9.09 Hz). The ISI was then slowed to 1100 ms and a 
single stimulus was presented to evoke the ERP and cue a behav-
ioral response. Participants then identified both vowels through 
keyboard responses following the isolated vowel pair. The next 

FIGURE 1    |    Clustered stimulus paradigm to induce alpha-band speech entrainment. The stimulus paradigm began with a rapid stimulus train 
presented at ~10 Hz, followed by a 1100 ms period of silence before the isolated vowel pair which cued behavioral responses (Bidelman 2015). Analyses 
were performed on induced neural entrainment observed during the silent period.
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trial began after the participants' response and 250 ms of silence. 
Participants were asked to identify both vowels as quickly and 
accurately as possible (no feedback was provided), and accuracy 
(defined as percentage of responses where both vowels were cor-
rectly identified) and reaction time (RT) were recorded for each 
trial. Double vowel pairs were randomized in order. This iden-
tical task was repeated over four learning blocks. In total, each 
block included 150 stimulus trials. Each block took 10–15 min to 
complete. Participants were offered a short (2–3 min) break after 
each block to avoid fatigue.

To investigate alpha activity induced by the preceding speech 
stimuli prior to listeners' behavioral response, we isolated neural 
activity to the stimulus train (−3300 to −1100 ms) and subsequent 
silent period (−1100 to 0 ms) just prior to target presentation that 
probed listeners' speech identification. This allowed us to assess 
how ongoing brain rhythms respond to rhythmic speech stimu-
lation and consequently modulate success in identification.

2.3   |   EEG Recording and Preprocessing

We used Curry 9 (Compumedics Neuroscan, Charlotte, NC) 
and BESA Research 7.1 (BESA, GmbH) to record and prepro-
cess the continuous EEG data. Continuous EEGs were acquired 
from 64-channel Ag/AgCl electrodes positioned at 10–10 scalp 
locations (Oostenveld and Praamstra  2001). Recordings were 
digitized at 5 kHz using Neuroscan Synamps RT amplifiers. 
Data were referenced to an electrode placed 1 cm behind Cz 
during online recording. Data were re-referenced to common 
average reference for subsequent analysis. Impedances were 
kept below 25 kΩ. Electrodes placed on the outer canthi of 
the eyes and superior and inferior orbit captured ocular move-
ments. Eyeblinks were corrected using a topographic principal 
component analysis (Wallstrom et  al.  2004). Responses were 
collapsed across vowel pairs to obtain an adequate number of 
trials for analysis (Bidelman and Yellamsetty 2017; Yellamsetty 
and Bidelman 2018). Responses exceeding 150 μV were rejected 
as further artifacts. We then bandpass filtered responses from 
7 to 12 Hz (zero-phase Butterworth filters; slope = 48 dB/octave) 
to isolate alpha-band activity (Alain et al. 2023; Bidelman 2017; 
Lai et al. 2022), corresponding to the nominal rate of our speech 
train stimuli. Data were then epoched during the train (−3500 
to −1100 ms) and silent portions of the stimulus presentation 
(−1100 to 0 ms) separately, baselined, and ensemble averaged to 
derive sustained response waveforms for each condition per sub-
ject. For subsequent analyses, neural responses were separated 
by listeners' trial-by-trial response accuracy (correct vs. incor-
rect trials).

2.4   |   Fast Fourier Transforms

To measure the strength of oscillatory activity influenced by the 
rapid stimulus train, we computed the Fast Fourier Transform 
(FFT) in the −3500 to −1100 (train) and −1100 to 0 ms (silence) 
time windows separately for each block and correct/incorrect 
trials. We measured the magnitude and frequency for the max-
imum spectral peak within the alpha band (7–12 Hz) at the Cz 
electrode to quantify alpha activity at the scalp level.

2.5   |   Functional Connectivity

To resolve the underlying brain sources of entrainment ef-
fects, we measured directional flow of information within 
the auditory-motor network using Granger Causality (GC) 
(Geweke 1982; Granger 1969). GC measures the degree to which 
Signal A “Granger-causes” Signal B and is computed direction-
ally in order to infer causal flow of information between brain 
regions. We computed functional connectivity in the frequency 
domain between primary auditory (A1) and motor (M1) cortex 
sources, bilaterally, using BESA Connectivity (v2.0) (Dhamala 
et al. 2008; Geweke 1982). A1 and M1 region of interest (ROI) 
source locations were defined via Talairach coordinates in tem-
plate brain space (x, y, z coords.: M1: ±44.8, −7.8, 38.24 cm; A1: 
±50.4, −21.7, 11.5 cm). Frequency decomposition was based on 
complex demodulation (Papp and Ktonas 1977), which results 
in uniform frequency resolution across the analysis bandwidth 
(i.e., sliding window FFT). The time-frequency analysis initially 
spanned the entire epoch window (−3400 to 1000 ms), using a 
pre-stimulus baseline (−3400 to −3200 ms) over a bandwidth be-
tween 5–20 Hz (i.e., centered at the nominal alpha frequency). 
However, we extracted GC within the post-stimulus train silence 
(−1100 to 0 ms) within the 7–12 Hz band (collapsed across time 
and frequency) to examine alpha auditory motor coupling just 
prior to the target cue and behavioral decision. We computed 
GC between A1 and M1 in both the forward and reverse direc-
tions (A1 → M1 and M1 → A1, respectively) to assess directed 
“bottom-up” and “top-down” neural signaling between auditory 
and motor system.

2.6   |   Statistical Analyses

Unless otherwise noted, we analyzed dependent variables using 
mixed model ANOVAs in R (version 4.2.2) (R-Core-Team 2020) 
using the lme4 package (Bates et al. 2015). Behavioral measures 
(accuracy, RT) were analyzed with fixed effects of group (2 lev-
els) and block (4 levels) and random effect of subject, with an 
additional fixed effect of behavioral response (2 levels, correct or 
incorrect) for RTs. Oscillatory strength was analyzed with fixed 
effects of group (2 levels), block (4 levels), behavioral response 
(2 levels), and random effect of subject separately for the train 
and silent portions of the stimulus. Additionally, we included a 
covariate for the number of trial counts for correct and incorrect 
responses. Granger Connectivity was analyzed with the same 
fixed and random effects as above, with two additional fixed ef-
fects of hemisphere (2 levels; left vs. right) and direction (2 levels; 
forward: A1 → M1, reverse: M1 → A1). Effect sizes are reported 
as partial eta squared (�2p) and degrees of freedom (d.f.) using 
Satterthwaite's method. Multiple pairwise comparisons were 
adjusted using Tukey method. Linear contrasts were adjusted 
using the Sidak method.

Initial diagnostics indicated heavy tailed distributions for both 
neural measures. Consequently, we used the Box–Cox proce-
dure (Box and Cox 1964) to transform the data and satisfy nor-
mality assumptions necessary for parametric statistics. This 
procedure transforms the data according to y’ = (yλ – 1)/λ, where 
λ = 0.071 and λ = −0.11 where determined empirically for oscil-
latory strength and connectivity, respectively.
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3   |   Results

3.1   |   Behavior

Figure 2 displays behavioral results for accuracy and reaction 
time (RT) for both M and NM groups across all four training 
blocks. An ANOVA on behavioral accuracy revealed a main 
effect of training block [F(3, 75) = 12.13, p < 0.001, �2p = 0.33]. 
Both groups improved in accuracy with training block (linear 
contrast:M: t(75) = 4.34, p < 0.001; NM: t(75) = 3.01, p = 0.0035). 
The ANOVA on RT revealed an interaction between group and 
response accuracy [F(1, 171.59) = 7.68, p = 0.0062, �2p = 0.04] 
driven by faster RTs for musicians during correct trials only 
(pairwise comparison: correct t(35.9) = −1.89, p = 0.067; incor-
rect t(35.7) = 0.43, p = 0.67). A main effect of block was also ob-
served on RT [F(3, 171.44) = 14.91, p < 0.0001, �2p = 0.21] driven 
by decreasing RT with block for both groups (linear contrast: 
t(171) = −5.65, p < 0.0001).

3.2   |   Oscillatory Activity During Stimulus Train 
and Silent Periods

Figure  3 displays alpha-band waveforms during the entire 
stimulus period. We analyzed alpha-band strength during the 
rapid stimulus train and silent portions of the stimulus period 
separately. Due to similar results for both stimulus portions, 
for subsequent connectivity analyses, we focused on the silent 
period just prior to the target double-vowel presentation that 
cued listeners' behavioral response to assess ongoing oscilla-
tory activity without the presence of external stimulation.

Figure 4 shows alpha-band entrainment amplitude in the rapid 
train (Figure 4a) and silent (Figure 4b) periods (i.e., just prior 
to the target cue) for correct and incorrect trials. Visually, the 
frequency specificity of the stimulus train can be seen in the 
sharper ~10 Hz peak for the train compared to the silence FFTs. 
The added broadening of the FFTs for the silent period and in-
correct trials likely reflects on overlay of intrinsic alpha oscil-
lations on top of the phase-locked activity evoked by the 10 Hz 
stimulus rhythm.

An ANOVA on alpha-band amplitude during the stimulus 
train revealed a group x block interaction [F(1, 172.38) = 3.40, 
p = 0.019, �2p = 0.06], driven by increasing amplitude with block 
for musicians only (linear contrast: M: t(178) = 3.67, p = 0.001; 
NM: t(174) = −0.43, p = 0.96). We also observed a group × re-
sponse accuracy interaction [F(1, 172.38) = 4.91, p = 0.028, �2p 
= 0.03], driven by musicians' stronger amplitudes preceding 
incorrect trials compared to nonmusicians [t(27.8) = 1.81, 
p = 0.080].

During the silent period, we observed a two-way interaction 
between group x trial accuracy [F(1, 172.38) = 4.52, p = 0.035, 
�
2
p = 0.03] (Figure  4c), driven by larger spectral amplitudes 

for musicians than nonmusicians preceding incorrect tri-
als [t(29) = 2.20, p = 0.036]. Groups showed similar response 
amplitudes before correct trials [t(29) = 1.011, p = 0.32]. 
There was also a block x response accuracy interaction [F(3, 
172.38) = 4.014, p = 0.0086, �2p = 0.07]. A linear contrast re-
vealed this interaction was due to a steady increase in response 
amplitude across blocks for incorrect trials [t(177) = 4.18, 
p < 0.0001], regardless of group. Responses were invariant 
across blocks for correct trials [t(177) = −0.41, p = 0.68]. A 
post-hoc Pearson correlation revealed that alpha-band ampli-
tude during stimulus silence was not correlated with RT for 

FIGURE 2    |    Behavioral accuracy and reaction time improved with 
training block. Behavioral measures are shown separately for correct 
and incorrect trials. (a) Accuracy in identifying both concurrently pre-
sented vowels improved with training block for both musicians and 
nonmusicians. Dashed line represents chance performance level. (b) 
Reaction time decreased with training block, with musicians exhibiting 
faster reaction times for correct trials. Boxes represent the middle 50% 
of each distribution, whiskers extend to 1.5 multiples of the interquar-
tile range.

FIGURE 3    |    Alpha-band responses during the stimulus time course. Alpha-band (7–12 Hz) waveforms for musicians and nonmusicians preceding 
correct (a) and incorrect (b) behavioral responses. Gray boxes represent stimulus in the rapid stimulus train (see Figure 1). Analyses were performed 
during the silent portion of the stimulus paradigm (yellow) just prior to the behavior-cueing token at t = 0 (black box).
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correct (r = −0.041, p = 0.68) nor incorrect (r = −0.11, p = 0.29) 
trials.

3.3   |   Auditory-Motor Connectivity

Figure 5 depicts time-frequency plots of source-level waveforms 
from auditory (A1) and motor (M1) cortex in the left (LH) and 
right hemispheres (RH) per group. Spectrographic maps were 
used to calculate GC connectivity, reflecting directed neural sig-
naling between ROIs, for correct and incorrect trials per hemi-
sphere and group (Figure 6).

A mixed-model ANOVA on GC strength revealed several 
two-way interactions (Figure 7). We found an interaction be-
tween hemisphere and group (Figure 7a) [F(1, 766.72) = 9.07, 
p = 0.0027, �2p = 0.01]. This was driven by stronger GC val-
ues in the right hemisphere compared to the left hemisphere 
for musicians only (pairwise comparison: M: t(766) = −4.69, 
p < 0.0001, NM: t(766) = −0.555, p = 0.58). An interaction 
between group and block (Figure  7b) [F(3, 769.72) = 3.64, 
p = 0.013, �2p = 0.01] was driven by greater connectivity with 
block for musicians only (linear contrast: M: t(791) = 3.16, 
p = 0.0050; NM: t(779) = 1.51, p = 0.35). We also observed an 
interaction between group and response accuracy (Figure 7c) 
[F(1, 766.72) = 5.030, p = 0.025, �2p < 0.01] which was driven 
by stronger GC during incorrect trials in both groups but es-
pecially musicians (pairwise comparison: M: t(766) = −13.69, 
p < 0.0001; NM: t(766) = −11.11, p < 0.0001). Finally, an in-
teraction between block and response accuracy (Figure  7d) 
[F(3, 766.72) = 4.55, p = 0.0036, �2p = 0.02] was driven by in-
creasing connectivity with block for incorrect trials only 
(linear contrast: correct: t(787) = 0.12, p = 0.99; incorrect: 

t(787) = 4.60, p < 0.0001). All other interactions were nonsig-
nificant. Additionally, we observed a main effect of direction 
(Figure 7e) [F(1, 766.72) = 4.53, p = 0.034, �2p < 0.01], attributed 
to higher auditory-to-motor (i.e., A1 → M1) compared with 
motor-to-auditory (i.e., M1 → A1) connectivity in both groups.

4   |   Discussion

By analyzing EEG oscillatory activity during perceptual learn-
ing of double-vowel mixtures in musicians and nonmusicians, 
we found (i) stronger alpha-band power preceding incorrect re-
sponses, especially for musicians; (ii) greater learning-related 
changes in connectivity for musicians, especially in the right 
hemisphere and preceding incorrect responses; and (iii) stron-
ger bottom-up (auditory-to-motor) than top-down (motor-to-
auditory) connectivity for both groups.

4.1   |   Musicians Show Stronger Modulation 
of Alpha Activity That Varied With Trial Success

Individuals with higher amounts of self-reported music training 
(musicians) had stronger alpha-band (7–12 Hz) activity preced-
ing incorrect trials in our double-vowel identification task than 
individuals with lower amounts of self-reported music training 
(nonmusicians). As our stimulus train (~9 Hz) overlaps with the 
alpha range, increased alpha activity could indicate stronger 
persistent stimulus entrainment after the sound has stopped (en-
trainment hypothesis) (Riecke et al. 2018) or reduced outward 
attention to the stimulus and greater inward reflective process-
ing (alpha-suppression hypothesis) (Klimesch 2012). Given that 
increased alpha activity was associated with incorrect rather 

FIGURE 4    |    Alpha oscillations following a rapid speech stimulus train predicts subsequent behavioral identification accuracy for double-vowel 
mixtures. (a) FFTs are displayed for musicians and nonmusicians during stimulus trains preceding correct and incorrect trials. Insets show time 
waveforms of the post-train period (see yellow shading, Figure 3). (b) FFTs are displayed during the silent stimulus period. Visually, the specificity 
of the stimulus train can be seen in a sharper peak for the train FFTs compared to the wider silence FFTs. (c) Musicians had stronger alpha band 
responses during silent intervals preceding incorrect trials than did nonmusicians, despite similar responses preceding correct trials. Results were 
similar for responses during the stimulus train. Boxes represent the middle 50% of each distribution, whiskers extend to 1.5 multiples of the inter-
quartile range.
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than correct responses, our data favor the suppression account 
of alpha-band rhythms. One potential explanation for increased 
activity associated with reduced attention to task is that larger 
alpha power reflects decreased neuronal excitability (e.g., inhi-
bition), which leads to reduced stimulus encoding at the sensory 
level. As a result of diminished stimulus encoding, task perfor-
mance becomes poorer (Iemi et al. 2022). Increases in alpha ac-
tivity after the rhythmic speech stimulus and before target cue 
could indicate that participants were “tuning out” the trial and 
therefore responded incorrectly (Klimesch 2012).

Trial-dependent changes in alpha power were stronger for 
musicians than nonmusicians preceding incorrect trials, 
despite similar levels of activity between groups preceding 
correct responses. One explanation for this finding could 
be that musicians are greater “modulators” of alpha brain 
rhythms. Previous studies have shown that changes in alpha 
oscillations are associated with improved task performance 
(Klimesch  2012; Lai et  al.  2022; Pfurtscheller and Lopes da 
Silva 1999; Price et al. 2019; Strauß et al. 2015). We have also 
recently demonstrated listeners who show less stimulus-
related changes in their alpha (i.e., “low alpha modulators”) 
achieve poorer performance on speech-in-noise perception 
tasks (Price et al. 2019). Alpha desynchronization in sensory, 
task-relevant brain areas may even be paired with alpha syn-
chronization over task-irrelevant areas where inhibition is nec-
essary (Mazaheri et al. 2014). Alpha power is also associated 

with attentional biasing during auditory processing, includ-
ing tasks involving the perception of difficult and ambiguous 
speech (Alain et  al.  2023). Greater alpha activity preceding 
incorrect trials may thus reflect changes in task-related in-
hibition and/or attentional gating. Indeed, broad increase in 
pre-stimulus neural activation predicts speech recognition 
errors (Vaden et al. 2015, 2022). And consistent with our elec-
trophysiological data, alpha power can be stronger preceding 
incorrect responses (Samaha et  al.  2020). Regardless of the 
mechanistic interpretation of alpha waves, it is clear musi-
cians recruit greater changes in alpha power between suc-
cessful and unsuccessful trials (Figure 4b). Given musicians' 
faster performance in double-vowel identification (MacLean 
et al. 2024), it would appear that a more dynamic alpha-band 
activation is advantageous for neuro-perceptual processing. 
A wider range of alpha control could also explain musicians' 
greater flexibility in deploying attentional resources during 
speech perception (Strait and Kraus  2011). This notion con-
verges with previous findings showing that acoustic-phonetic 
properties of speech indexed by alpha rhythms are ampli-
fied in musicians and support more robust categorization in 
speech perception tasks (Bidelman 2017).

Relatedly, under the canonical attentional interpretation of 
alpha, increased alpha activity in musicians may be the result 
of greater “tuning-out,” or reduced attentional gating to the 
task during incorrect trials. In this vein, EEG alpha activity is 

FIGURE 5    |    Source time-frequency responses reflecting neural activity within the auditory-motor network. Each spectrogram demonstrates 
spectral density within the alpha band range stemming from auditory (A1) and motor (M1) cortex. Hot colors, %-increase in activity relative to base-
line; cool colors, %-decrease activity. t = 0 denotes the onset of the double-vowel mixture that cued listeners' behavioral response. Note the power at 
~10 Hz reflecting phase-locking to the rapid stimulus train (see Figure 1a) which is also stronger in musicians. L/R = left/right hemisphere.
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FIGURE 6    |    Auditory-motor coupling varies by group, hemisphere, and trial-wise accuracy. Granger connectivity values were strongest for musi-
cians in the right hemisphere preceding incorrect trials. Both groups had weaker connectivity in the motor to auditory direction. Boxes represent the 
middle 50% of each distribution, whiskers extend to 1.5 multiples of the interquartile range.

FIGURE 7    |    Significant interactions and main effects on Granger connectivity. (a) Hemisphere × group, (b) block × group interaction, (c) group 
× response accuracy, and (d) block × response accuracy interactions. (e) Main effect of direction. Connectivity was stronger in the auditory-motor 
(bottom-up) vs. motor-auditory (top-down) direction. Boxes represent the middle 50% of each distribution, whiskers extend to 1.5 multiples of the 
interquartile range.
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associated with GABAergic neuronal processing that is linked 
to intrinsic brain activity and suppressing task-irrelevant in-
formation (Klimesch et  al.  2007). It is possible that the task 
was easier for musicians. Reduced attention to the task would 
account for the greater engagement of alpha-band activity we 
find in musicians, especially preceding incorrect responses. 
Though, we note musicians showed faster decision speeds in 
double-vowel identification in correct (but not incorrect) tri-
als, ruling out a blanket attentional lapse interpretation of 
our data. Musicians' greater alpha desynchronization for suc-
cessful trials could reflect stronger attentional modulation or 
even greater resources for redirecting attention when needed 
(or desired). Indeed, both groups showed increased behavioral 
performance with block, but musicians exhibited faster RTs 
for correct-only trials than nonmusicians. Thus, it is conceiv-
able that performance may have become more automatized in 
musicians during the time course of learning. This is addition-
ally supported by our functional connectivity data. Musicians 
showed increased alpha-band auditory-motor connectivity 
with training block, whereas nonmusicians did not. In this 
vein, prior studies have shown greater selective auditory at-
tention for musicians in concurrent speech or “cocktail party” 
scenarios (Brown and Bidelman  2023; Clayton et  al.  2016; 
Strait et  al.  2010), but see (Baumann et  al.  2008), and there 
is also evidence that inhibitory attentional control is stronger 
and more efficient in musically trained individuals (Medina 
and Barraza 2019).

Further support for interpretation of increased alpha power 
as reduced attention to task is supported by findings relat-
ing alpha power to creativity (Stevens and Zabelina  2019). 
Similarly, greater auditory-motor connectivity for musicians 
preceding incorrect trials may be the result of increased inter-
nal reflection. Reflective processing coincides with decreased 
arousal/attention observed through alpha desynchronization 
(Klimesch 2012). Internal reflections or “daydreaming” prior to 
incorrect trials could indicate more widespread, inefficient pro-
cessing unrelated to the task (Fink and Benedek 2014). Previous 
studies link stronger alpha activity and resting-state functional 
connectivity with creativity in long-term trait (Bazanova and 
Aftanas  2008; Beaty et  al.  2014) and short-term task-related 
(Stevens and Zabelina 2019) contexts. Understanding increased 
alpha activity as reduced attention to task goes hand in hand 
with greater “tuning out” or internal reflection, though our task 
did not measure this phenomenon explicitly.

Determining the facilitatory or inhibitory role of alpha in 
concurrent speech listening, as well as how this role may 
be modulated by music training, could inform future inter-
ventions to improve everyday complex listening skills (Gray 
et  al.  2022). For example, the overall power and ability to 
modulate alpha activity to suppress irrelevant information 
declines in older listeners, which may render pre-target os-
cillations weaker and less viable as a mechanism for atten-
tional gating (Klimesch  1999; Vaden et  al.  2012; Wöstmann 
et al. 2015). As implied by prior behavioral and neuroimaging 
studies, music engagement might help offset these age-related 
declines in auditory processing and help fortify the sensory-
attentional mechanisms necessary for parsing complex speech 
mixtures (Bidelman and Alain  2015; Lu et  al.  2022; Zendel 
and Alain 2009, 2012; Zendel et al. 2019).

Our study only examined alpha activity following a cueing 
rhythmic speech train in the alpha range. Further exploration of 
the role of such induced (endogenous) alpha entrainment, both 
to external speech and between brain areas, and how it inter-
acts with stimulus-related speech phase-locking (Puschmann 
et  al.  2018) is needed in order to understand neuroplastic 
changes in oscillatory activity and how it benefits concurrent 
speech perception. In this vein, neurostimulation studies have 
already demonstrated that enhancing cortical entrainment 
causally improves comprehension including performance for 
noise-degraded speech (Guilleminot and Reichenbach  2022; 
Wilsch et al. 2018).

4.2   |   Auditory-Motor Connectivity During 
Concurrent Speech Listening Differs Based on 
Musicianship

During our active double-vowel perception task, musicians 
showed greater auditory-motor connectivity in the right hemi-
sphere, whereas nonmusicians displayed similar connectivity 
in both hemispheres. These results are in line with emerging 
findings suggesting musicianship is associated with stronger 
functional connectivity in the right hemisphere that is associ-
ated with preserved speech-in-noise capabilities with age (Zhang 
et  al.  2024). Right hemispheric brain pathways are dominant 
for pitch and fine spectral processing (Zatorre et al. 2002, 1992). 
Thus, greater RH engagement in musicians may indicate their 
greater “cue-weighting” of pitch-based cues to distinguish vowels 
during our concurrent speech task, in line with our previous ERP 
findings of the same data (MacLean et al. 2024). Relatedly, other 
studies suggest that musicians have stronger right hemisphere 
entrainment to speech within the alpha band (Puschmann 
et al. 2021). Nonmusicians' similar patterns of connectivity be-
tween left and right hemispheres may indicate that neither a left-
biased linguistic (Hickok and Poeppel 2007; Mankel et al. 2022) 
nor right-biased pitch strategy was preferred. Given musicians' 
greater speed in the task (MacLean et al.  2024), a pitch-based, 
spectral strategy may have been advantageous which could ex-
plain the larger recruitment of RH activity observed in our data.

4.3   |   Auditory-Motor Connectivity Is Stronger in 
the Bottom-Up vs. Top-Down Direction

We found both musicians and nonmusicians had stronger 
connectivity in the auditory-to-motor compared to motor-to-
auditory direction prior to double-vowel identification. The 
directionality of connectivity provides insight as to whether con-
current speech stimuli were processed in a bottom-up (auditory-
to-motor) or top-down (motor-to-auditory) manner. Here, greater 
auditory-motor connectivity preceding behavior may indicate 
more reliance on the extraction of stimulus-specific features 
than anticipatory motor representations of the speech stimuli 
(Morillon and Baillet  2017; Tian and Poeppel  2012). One idea 
is that the motor system becomes involved in speech perception 
when listening becomes difficult, such as when acoustic input 
is sparse (Osnes et al. 2011) or speech is presented in noise (Du 
et al. 2016). As we observed stronger bottom-up connectivity for 
both groups, stimulus-based feature extraction may be more ad-
vantageous than anticipatory timing during our task. That is, the 
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repetitive stimulus train and simultaneous onset for both vowels 
may have decreased the need for reliance on top-down anticipa-
tory motor-system strategies (Wu et  al.  2014). Alternatively, if 
the task became more automatic with learning, this would tend 
to evoke more bottom-up signaling, which is also enhanced in 
musicians (Bidelman and Krishnan 2010; Bidelman et al. 2014; 
Musacchia et  al.  2007; Parbery-Clark, Skoe, and Kraus  2009; 
Puschmann et  al.  2018). Our stimulus train was also periodic 
and predictable. It is possible that changes to the timing and/or 
predictability of speech sounds (e.g., jittered stimulus train) may 
differentially recruit auditory-motor engagement and alter the 
direction of connectivity during speech processing (cf. Momtaz 
and Bidelman 2024; Morillon and Baillet 2017). Future studies 
are needed to test these possibilities.

4.4   |   Limitations

Though many studies (including the present) have demonstrated 
biobehavioral “musician advantages” in speech perception tasks, 
we would be remiss to not acknowledge the cross-sectional na-
ture of our study. As such, we are not able to tease apart effects 
of music training from genetic predispositions or other environ-
mental factors (Norton et al. 2005; Schellenberg and Lima 2024). 
Indeed, we have demonstrated that “musical sleepers,” individ-
uals without music training who perform similarly in tasks of 
music perception as trained musicians, can also demonstrate 
strengthened neural processing and speech-in-noise perception 
(Mankel and Bidelman 2018). Differences in education format 
(e.g., solo vs. group), instrument (e.g., drums vs. voice), music 
style (e.g., classical vs. folk), and timeline of music training 
(Smayda et al. 2018) could lead to heterogenous differences in 
sound perception among “musicians” (Tervaniemi  2009), and 
perhaps result in diverse decision strategies that affect perfor-
mance (Roark et  al.  2022; Smayda et  al.  2015). Our own data 
support different task strategies, showing distinct, learning-
related hemispheric patterns of neural circuitry between groups 
in a concurrent speech perception task (MacLean et al. 2024).

Another limitation of this study is that we did not examine au-
ditory working memory or attention, cognitive processes which 
have been associated with music training (Koelsch et al. 1999; 
Parbery-Clark, Skoe, Lam, and Kraus  2009; Strait et  al.  2010; 
Zuk et  al.  2014). Though, we note that cognitive differences 
among musicians and nonmusicians are not always consistently 
observed in these abilities (Escobar et al. 2020). Despite these 
caveats, our data nevertheless demonstrate neural differences in 
alpha-band oscillatory activity and auditory-motor connectivity 
between individuals who differ in their amount of self-reported 
music training, but do not differ with respect to important de-
mographic variables such as age or language experience. Still, 
future longitudinal studies are needed to confirm interactions 
between oscillatory activity and music training with regard to 
concurrent speech perception.

5   |   Conclusion

We observed stronger alpha-band oscillatory activity pre-
ceding incorrect behavioral responses to speech stimuli in 
musicians. Our findings support the notion that alpha-band 

(~10 Hz) arousal/suppression in brain activity is an important 
modulator of trial-by-trial success in perceptual processing, 
especially for musicians. Musicians' stronger auditory-motor 
connectivity in the right hemisphere suggests heavier reli-
ance on spectral information with increased music training. 
Finally, increased bottom-up auditory-motor connectivity for 
both groups implies greater use of stimulus-specific features 
rather than temporal expectations during the double-vowel 
task. Overall, our findings contribute to the understanding of 
how musicianship may interact with oscillatory mechanisms 
to shape speech perception.
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