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Acoustic information in speech changes continuously, yet listeners form discrete perceptual categories to ease the
demands of perception. Being a more continuous/gradient as opposed to a more discrete/categorical listener may
be further advantageous for understanding speech in noise by increasing perceptual flexibility and resolving
ambiguity. The degree to which a listener’s responses to a continuum of speech sounds are categorical versus
continuous can be quantified using visual analog scaling (VAS) during speech labeling tasks. Here, we recorded
event-related brain potentials (ERPs) to vowels along an acoustic—phonetic continuum (/u/ to /a/) while lis-
teners categorized phonemes in both clean and noise conditions. Behavior was assessed using standard two
alternative forced choice (2AFC) and VAS paradigms to evaluate categorization under task structures that pro-
mote discrete vs. continuous hearing, respectively. Behaviorally, identification curves were steeper under 2AFC
vs. VAS categorization but were relatively immune to noise, suggesting robust access to abstract, phonetic cat-
egories even under signal degradation. Behavioral slopes were correlated with listeners’ QuickSIN scores;
shallower slopes corresponded with better speech in noise performance, suggesting a perceptual advantage to
noise degraded speech comprehension conferred by a more gradient listening strategy. At the neural level, P2
amplitudes and latencies of the ERPs were modulated by task and noise; VAS responses were larger and showed
greater noise-related latency delays than 2AFC responses. More gradient responders had smaller shifts in ERP
latency with noise, suggesting their neural encoding of speech was more resilient to noise degradation. Inter-
estingly, source-resolved ERPs showed that more gradient listening was also correlated with stronger neural
responses in left superior temporal gyrus. Our results demonstrate that listening strategy modulates the cate-
gorical organization of speech and behavioral success, with more continuous/gradient listening being advan-
tageous to sentential speech in noise perception.

1. Introduction

Listeners are often tasked with understanding speech signals in noisy
listening environments. Speech-in-noise (SIN) perception is a difficult
cognitive process and a common audiologic complaint. While certain
clinical populations, such as those with hearing loss (Picard et al., 1999;
Plomp, 1978), cognitive deficits (Bradlow et al., 2003; Grady et al.,
1989), traumatic brain injury (Hoover et al., 2017; Vander Werff &
Rieger, 2019), and old age (Bergman, 1971; Humes et al., 2013), show
exacerbated SIN difficulty, even normal hearing listeners can have
deficits in SIN comprehension (Bharadwaj et al., 2015; Hannula et al.,

2011; Ruggles et al., 2011; Tremblay et al., 2015). This large variability
in SIN perception emphasizes the importance of analyzing individual
differences in performance to understand how a listener’s perceptual
strategy might influence SIN outcomes.

Listeners have simultaneous access to both acoustic (continuous) and
phonetic (categorical) cues of the speech signal (Andruski et al., 1994;
Blumstein et al., 2005; McMurray et al., 2002; Miller & Volaitis, 1989;
Pisoni & Tash, 1974). Different listeners might weigh information from
these modes differently during speech perception tasks, such that some
listeners are more categorical/discrete responders, while others are
more continuous/gradient responders (Kapnoula et al., 2021; Kapnoula
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etal., 2017; Kong & Edwards, 2016). Theoretically, either strategy could
benefit perception. First, categorical/discrete listening may be an ideal
strategy for SIN perception. While acoustic information changes
continuously, listeners bin speech sounds into equivalency categories to
map speech acoustics to a high-level phonetic code (Liberman et al.,
1967; Pisoni, 1973). This more abstract categorical code might be more
resistant to degradation by noise, since it does not rely on surface fea-
tures of speech that are easily washed out by noise (Bidelman et al.,
2020; Bidelman et al., 2019). Indeed, more discrete listeners show less
interference from informational masking in auditory streaming tasks
that mimic naturalistic “cocktail party” listening scenarios (Bidelman
et al., 2024). Previous work using event-related brain potentials (ERPs)
has also demonstrated enhanced P2 responses to noise-degraded speech
sounds with clear phonetic identities compared to ambiguous speech
sounds that do not carry a clear phonetic label, suggesting the brain does
not linearly code changes in acoustics but represents a categorical code
(Bidelman et al., 2020; Bidelman et al., 2013; Bidelman & Walker, 2019;
Bidelman & Walker, 2017). The categorical organization for speech is
thought to involve a network including auditory cortex (Bidelman &
Lee, 2015; Bidelman & Walker, 2019; Chang et al., 2010) and higher-
order linguistic centers in the inferior frontal gyrus (IFG) (Alho et al.,
2016; Myers et al., 2009) that are differentially engaged depending on
task difficulty (Carter & Bidelman, 2021) and a listener’s experience (e.
g., language or music background; Bidelman & Lee, 2015; Bidelman &
Walker, 2019).

Conversely, a gradient/continuous listening strategy might confer a
perceptual advantage for SIN processing. Maintaining within-category
acoustic information may allow listeners to “hedge” their bets on the
speech sounds they hear and resolve ambiguity (Kapnoula et al., 2017).
For instance, when speech sound identities are more uncertain having
variable voice onset times (VOTs), listeners respond in a more graded
fashion (Clayards et al., 2008). Kapnoula et al. (2021) found that
gradient listeners were better able to recover from lexical ambiguity in
garden path sentences, though SIN perception was not improved.
Gradient listeners might also have more flexibility in cue-weighting
when making phonetic decisions about the acoustic input (Kapnoula
et al., 2017; Massaro & Cohen, 1983b; Toscano & McMurray, 2010).
Neural evidence of gradient processing from ERPs has demonstrated
linear changes in the N1 wave (~100 ms) with changes in VOT (Toscano
et al., 2010), earlier in the time course of the response than categorical
information seems to be coded (Bidelman et al., 2013). Though, graded
speech representations can be maintained in the neural signal for up to
900 ms (Sarrett et al., 2020), even after category abstraction (Bidelman
et al.,, 2013). These findings suggest the brain likely represents and
maintains both within- and between-category information (Toscano
et al., 2018). Imaging studies suggest that graded activation to speech
cues occurs in left superior temporal gyrus (STG) (Myers et al., 2009).
Thus, gradient perception may rely more heavily on sensory represen-
tations at the level of auditory cortex, while category labelling might
recruit higher order linguistic resources downstream (IFG). While it is
clear neural responses scale with acoustic—phonetic features of the
speech signal (exogenous properties), it is unclear how they are modu-
lated by endogenous properties of the listener. Here, we ask whether
differences in listening strategy can actively modulate the neural
encoding of speech and beneficially transfer to SIN processing.

One barrier to studying listening strategy is the common use of two
alternative forced choice (2AFC) paradigms in speech categorization
tasks. In 2AFC, listeners hear speech sounds sampled from an equidistant
acoustic—phonetic continuum (e.g., /da/ to /ga/). Listeners are asked to
press a button to report which of two speech sounds they heard in a
forced, binary judgment. The slope of the resulting identification func-
tion is often taken as a measure of categoricity in the behavior
(Bidelman, 2015; Hallé et al., 2004; Sussman, 1993; Werker & Tees,
1987; Xu et al., 2006). While identification curve slopes assessed under
2AFC can be used as a measure of listener strategy, it remains unclear
whether shallower slopes reflect more/less gradiency in perception or
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simply noisier responses (Apfelbaum et al., 2022; Kapnoula et al., 2017;
McMurray et al., 2018). Indeed, disordered populations often have
shallower slopes in labeling tasks which is usually interpreted as less
categorical hearing (Godfrey et al., 1981; Joanisse et al., 2000; Serni-
claes et al., 2001; Serniclaes et al., 2005; Sussman, 1993; Werker & Tees,
1987). SIN deficits are also common in many of these disorders
(Cunningham et al., 2001; Dole et al., 2012; Elmahallawi et al., 2021;
Lagaceé et al., 2010; Warrier et al., 2004; Ziegler et al., 2009), suggesting
a shared mechanism between SIN abilities and categorical perception.
However, it is plausible that 2AFC responses in these populations are
simply less consistent, resulting in shallower identification slopes due to
internal perceptual noise rather than difficulty forming categories.

More recent work has demonstrated that using a visual analog scale
(VAS) yields measurements of listener strategy that are more indepen-
dent of internal noise (Kapnoula et al., 2017), suggesting this method is
better for quantifying listener strategy. Whereas the 2AFC task promotes
categorical reporting, the VAS task allows for more open-ended re-
sponses, thereby reflecting more nuances in listeners’ perception of
acoustic cues (Munson et al., 2017). For example, VAS response distri-
butions distinguish discrete from gradient listeners in that discrete lis-
teners make more use of the endpoints of the scale and gradient listeners
distribute responses across the entire scale (Kapnoula et al., 2017; Kong
& Edwards, 2016; Massaro & Cohen, 1983a).

Current literature has not consistently demonstrated a perceptual or
neurophysiological benefit for either categorical or continuous listening
on SIN perception. It is also unclear how individuals’ neural responses
are modulated by task demands alone (i.e., promoting gradient re-
sponses in a VAS task and categorical responses in a 2AFC task). In the
present study, we measured EEG and behavioral responses during a
phoneme labelling task under 2AFC and VAS paradigms to quantify
listeners’ categoricity/gradiency in perception. We then assessed cor-
respondences between listening strategy, ERPs, and standardized mea-
sures of SIN perception. Our results demonstrate that better SIN
comprehension scores and stronger neural responses in left STG corre-
spond with more gradient listening, establishing a neural-perceptual
link between SIN performance and listening strategy.

2. Results
2.1. Behavioral data

We first confirmed listeners’ VAS responses were subject to indi-
vidual differences and thus showed evidence of different listening stra-
tegies. Fig. 1 shows responses from n = 2 representative subjects whose
responses were more “gradient/continuous” and more “discrete/cate-
gorical”, respectively. More gradient listeners (Fig. 1A) tended to
respond along the entire scale to report their percept and have shallower
identification curve slopes (Fig. 1B), while more discrete listeners’
(Fig. 1C) responses tended to cluster around the endpoints of the con-
tinuum with steeper identification curve slopes (Fig. 1D). This confirms
listeners do not respond uniformly, motivating us to quantify individual
differences in their behavioral response patterns.

An ANOVA conducted on identification curve slopes revealed that
listeners had steeper slopes (i.e., more categorical labeling) in the 2AFC
compared to the VAS task [F(1,57) = 49.55, p < 0.0001, 173 = 0.47] and
for clean compared to noise-degraded speech [F(1,57) = 4.91, p = 0.03,
113 = 0.08] (Fig. 2). The dip statistic, measured only for the VAS task

blocks, decreased with noise [F(1,209) = 18.94, p < 0.001, 77§ =0.08].
Behavioral VAS slopes were highly correlated with the dip statistic [r
(38) = 0.87, p < 0.0001], confirming, as expected, more dichotomous
responses were associated with bimodal VAS distributions.

Likewise for RT speeds, there was a significant main effect of token [F
(4,361) = 12.45, p < 0.0001, ;13 =0.12], task [F(1,361) = 1106.37,p <
0.0001, 715 = 0.75], and SNR [F(1,361) = 7.91, p = 0.005, 171% = 0.02].
The task effect was partially attributed to faster responses under 2AFC
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Fig. 1. Listeners vary in their response distributions during phoneme labeling. (A,C) Behavioral response distributions for n = 2 representative participants (clean
condition) during VAS labeling. Some listeners report their percept using the entirety of the scale (A: more gradient listener), while others distribute their responses
toward the endpoints of the scale (C: more discrete listener). Black lines show density plots. Tick marks on the abscissa represent individual responses along the scale.

(B, D) Identification curves for the same n = 2 participants across all task and noise conditions. Within subjects, identification remains relatively stable across
conditions but varies dramatically between listeners.
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Fig. 2. Behavioral identification changes with categorization task and noise conditions. (A) Behavioral vowel identification follows a stair-stepped function typical
for categorical perception. Steeper slopes, indicative of more categorical listening, were observed in the 2AFC clean condition. Slopes became shallower under VAS
labeling and more minimally with the addition of noise. Inset, mean slope in each condition (C = clean, N = noise). (B) RTs are slowest for the midpoint (ambiguous)
token of the continuum. Faster RTs are observed during 2AFC vs. VAS labeling and (to a lesser extent) for clean relative to noise-degraded speech. Error bars = + 1 s.

e.m.
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vs. VAS labeling whereas the SNR effect was due to slightly faster re-
sponses in clean vs. noise. The token effect was attributed to the hall-
mark slowing in RTs for tokens near the ambiguous midpoint of the
continuum (Bidelman et al., 2020; Bidelman & Walker, 2017; Pisoni &
Tash, 1974). This slowing occurred regardless of task or noise SNR
[contrast: mean(Tk1,2,4,5) vs. Tk3; all p-values < 0.012].

Shallower identification functions could result from weaker catego-
rization and/or noisier responding, both of which would flatten a sig-
moid function (Kapnoula et al., 2017). To test the possibility that
changes in identification slopes were due to noisier responding, we
calculated the standard deviation of subjects’ responses to each token
during the VAS conditions, which provides a proxy of sensory noise
(Kapnoula et al., 2017). Response noise was not correlated with slope
measures [r(38) = 0.02, p = 0.92], suggesting the steepness of listeners’
identification functions was independent of sensory noise in the decision
process (and therefore instead due to more/less discrete hearing).

Importantly, we found listeners’ QuickSIN scores were highly
correlated with categorization slopes for both tasks (2AFC: r(38) = 0.36,
p < 0.0001; VAS: r(38) = 0.30, p < 0.0001) and SNR conditions (clean: r
(38) = 0.21, p < 0.0001; noise: r(38) = 0.39, p < 0.0001) (Fig. 3). Lis-
teners with lower dB SNR loss (i.e., better SIN comprehension) had more
gradient (shallower) behavioral slopes, suggesting a more continuous
listening strategy may be beneficial for SIN understanding.

2.2. Electrophysiological data

2.2.1. Electrode level data

Figs. 4 and 5 show the electrode-level waveforms, topographic maps,
and P2 amplitudes and latencies at the central electrode cluster. To-
pographies are average activity across the latency window [140-320
ms] and thus, show more posterior activation than the canonical P2
topography, likely due to the active task required recruiting more neural
regions during the prolonged window used here. P2 amplitudes at the
central cluster differed across vowels [F(5,437) = 3.19, p = 0.0078, ;73 =
0.04], SNR [F(1,437) = 54.89, p < 0.001, r]ﬁ =0.11], and task [F(1,437)
= 22.5, p < 0.001, ;13 = 0.05]. VAS amplitudes were larger than 2AFC
amplitudes [t(437) = —4.743, p < 0.001] across noise conditions. There
was also a main effect of noise on P2 latencies [F(1,437) = 138.55, p <
0.001, ng = 0.24]. Interestingly, P2 latencies showed a SNR x task
interaction [F(1,57) = 6.43, p = 0.012, nﬁ = 0.01], whereby VAS la-
tencies were more prolonged by noise [t(437) = —10.12, p < 0.001] than
2AFC latencies [t(437) = —6.53, p < 0.001]. Similar effects were found
at the other electrode clusters (all p-values < 0.01) with an additional
main effect of vowel at all but the center cluster (all ps < 0.0001).

To further investigate the task x SNR interaction, we examined
whether noise-related changes in the ERPs predicted the degree of lis-
teners’ behavioral categorization. To this end, we correlated P2 latency
shifts produced by noise (i.e., P2poise — P2guier) during the VAS task with
listeners’ behavioral slopes. We found that more gradient responders
had smaller noise-related P2 latency shifts, suggesting their speech ERPs
were more resilient to noise-degradation [r(18) = 0.48, p = 0.032]
(Fig. 6).! These findings imply that neural timing to speech was less
strongly impacted by noise in more gradient responders.

2.2.2. Source level data

To resolve the underlying sources that might contribute to these
scalp effects, we examined source-resolved activity using CLARA
distributed imaging (Carter et al., 2022; lordanov et al., 2016). Fig. 7A
shows correlations between the raw source activations in the P2 time
window and behavioral identification across the full brain volume. Data
are pooled across the 2AFC and VAS tasks to assess the overall pattern

1 This correlation was still significant [r(14) = 0.48, p = 0.044] when the two
participants with negative latency shifts were removed from the analysis.
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between behavioral slopes and brain activity. The cluster analysis and
permutation statistics procedure revealed one significant (p = 0.012)
spatiotemporal cluster encompassing auditory-sensory regions within
left superior temporal gyrus (1STG; Talairach coordinates: x = —52.5,y
= -23.9, z = 2.7) (Fig. 7B). Both the peak amplitude (r = —0.46, p <
0.0001; Fig. 7C) and latency (r = 0.26, p = 0.021; Fig. 7D) of these | STG
source activations were strongly correlated with the listeners’ percep-
tion.” That is, weaker and later STG responses were associated with
steeper identification slopes and thus more categorical (discrete) hear-
ing. Conversely, stronger and earlier STG responses were associated
with shallower speech labeling and thus more continuous modes of
listening.

3. Discussion

Prior work has been equivocal on whether being a more categorical
or continuous listener is optimal for degraded speech perception. By
measuring ERPs to clean and noise-degraded vowel sounds during
behavioral tasks that require more/less continuous vs. categorical
hearing, we investigated the neural mechanisms subserving the rela-
tionship between listening strategy and SIN performance. Participants’
identification curve slopes served as a measure of their listening strategy
independent of internal noise. We found more continuous listeners, with
shallower behavioral slopes reflecting more gradient phoneme percep-
tion, performed better on the QuickSIN, suggesting a perceptual
advantage for SIN comprehension afforded by a more continuous
listening strategy. Our data also reveal that speech-ERPs are modulated
by task structure: otherwise identical speech sounds are differentially
encoded by the brain depending on post-perceptual task demands. We
also found prominent noise-related changes in the ERPs that depended
on listening strategy; more gradient listening corresponded with smaller
shifts in latency with noise. Lastly, source analysis revealed these neural
effects were attributed to changes in | STG activation, whereby more
gradient listening was associated with larger and faster responses in
early, left lateralized auditory brain regions. Collectively, our results
demonstrate both behavioral and neural benefits of a more gradient
listening strategy to speech sound processing and SIN perception.

3.1. Speech categories are robust to noise

Behaviorally, we found categorization remained strong in noise with
only a small reduction in behavioral slopes at more difficult SNRs. This
supports behavioral findings from Bidelman et al. (2020) showing cat-
egorical representations for speech persist even in perceptually chal-
lenging levels of noise. These results suggest that binning speech sounds
into categories is a robust perceptual process and may confer advantages
to SIN perception (Bidelman et al., 2020; Bidelman and Carter, 2023).
Higher-level category representations can be maintained even when
acoustic representations are degraded by noise. RTs followed a classic
pattern in labeling, slowing around the ambiguous midpoint of the
continuum in both task and noise conditions; responses were fastest for
speech sounds carrying a clear phonetic label (Bidelman & Walker,

2 Apparent edge effects in source amplitudes and latencies are due to how the
CLARA inverse solution prunes low amplitude neural activations. CLARA iter-
atively reduces the source space to minimize low amplitude activations. The
method estimates the total variance of the scalp-recorded data and applies a
smoothness constraint to ensure that current changes little between adjacent
regions in the brain (Michel et al., 2004; Picton et al., 1999). CLARA makes
source images more focal by iteratively reducing the source space during
repeated estimations. On each step (x2), a spatially smoothed LORETA solution
(Pascual-Marqui et al., 2002). is recomputed and voxels below a 1% max
amplitude threshold are removed. Thus, some listeners showed near zero
amplitude after CLARA pruning and subset cluster-based statistics to correct
spurious activations across the brain volume (see Section 5.7).
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2017; Pisoni & Tash, 1974). This suggests, in the broadest sense, cate-
gory speech representations might provide an easy, faster readout to
perceptual processing.

RT delays in the VAS relative to 2AFC task may be attributable to
differences in the behavioral response requiring the use of a mouse click

rather than a button press (Bidelman et al., 2024). In addition to dif-
ferences in the motor response, the VAS task may have placed greater
attentional demands and/or listening effort on listeners due to the use of
a continuous perceptual rating scale, effects which are typically
magnified in noise-degraded scenarios (Lewis & Bidelman, 2020). This
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could have resulted in the prolonged RTs we find during VAS categori-
zation. Indeed, the use of mouse-tracking in categorization tasks has
revealed subtle dynamics in perception as listeners actively weigh sen-
sory cues to formulate their ultimate category label (Bidelman & Carter,
2023; Huette & McMurray, 2010; Viswanathan & Kelty-Stephen, 2018).
The use of mouse responses in both 2AFC and VAS tasks could have
teased out whether slower RTs are indeed indicative of greater attention
for graded decision-making. In this vein, we found that more gradient
listeners had slower RTs in general, suggesting more gradient listening
may indeed require greater attentional resources. Although task de-
mands may have influenced behavioral RT outcomes, large individual
differences in listening strategy persisted in the precision of listeners’
identification slopes, which are unlikely to be attributable to task motor
demands. Moreover, task demands did not affect participants uniformly.
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3.2. Categorization skills are related to SIN perception but show an
advantage for more gradient listening

Notably, we found that more gradient listeners (as measured via
phonetic categorization), achieved better SIN comprehension scores
(measured via sentences in the QuickSIN). More gradient listeners may
be better equipped to deal with uncertainty by maintaining within-
category information to better “hedge” their bets when a speech signal
is ambiguous (Kapnoula et al., 2017; McMurray et al., 2008), such as
during SIN testing.

Prior work has failed to establish a consistent link between SIN
performance and listening strategy. This discrepancy is likely due to
differences in experimental task design. Neural and behavioral evidence
from phoneme labelling tasks in Bidelman et al. (2020) suggests that
stronger categorization (i.e., more discrete listening strategy) could aid
in successful SIN performance. However, SIN measures in that study
were based solely on a phoneme labelling in noise task (2AFC), whereas
the present study used more complex SIN assays via the QuickSIN.
Moreover, our use of VAS labeling to evaluate listener strategy with
regard to categorization skills provides a cleaner measure than 2AFC as
it is less obstructed by internal sensory noise that can confound the
interpretation of identification curve slope data (Kapnoula et al., 2017).
Collectively, our data support the notion that more gradient/continuous
listening strategies are more beneficial to real-world SIN listening
scenarios.

Our findings differ from several prior studies assessing putative re-
lations between categorization and SIN skills. Kapnoula et al. (2021)
sought to correlate success of word comprehension in noise with
listening strategy measured by a VAS during a garden path sentences
task. Though garden path sentences require listeners to resolve ambi-
guity, a theoretically similar cognitive process to listening to speech in
noise, this task does not directly use degraded speech stimuli. Our study
thus differs from Kapnoula et al (2021) in that we directly relate two
measures of SIN perception at the phoneme and sentence levels, though
we used different types of noise at each level (speech-shaped noise for
phonemes and multi-talker babble for sentences). More akin to the
present study, Bidelman et al. (2024) demonstrated that discrete lis-
teners assessed by a VAS phoneme labeling task had less interference
from informational masking than gradient listeners when measured in a
cocktail party streaming task containing speech-on-speech maskers.
While our results conflict with those of Bidelman et al. (2024), it is
highly likely that different strategies could be deployed across different
listening environments to optimize perceptual performance—a single
listening “mode” might not be a one size fits all. While more gradient
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listeners may perform better on sentence recognition tasks in multi-
talker babble, auditory streaming tasks may engage separate processes
that benefit from more discrete listening strategies (Bidelman et al.,
2024).

One limitation in our design is the use of isolated phoneme labeling
to investigate listening strategy. In real-world listening, there are more
factors that might influence speech-in-noise perception, including other
sources of acoustic variability (Rogers et al., 2004; Rogers et al., 2006)
and contextual information (Sheldon et al., 2008; Van Engen et al.,
2014) available to a listener. Listeners may change their perceptual
strategies across different listening scenarios or remain consistent. An
ideal listener may be one that weighs continuous and categorical cues
optimally (Kapnoula et al., 2017; Massaro & Cohen, 1983b) or even
dynamically shifts their weights according to the present listening de-
mands. Future studies using a large variety of ecological SIN assessments
and informational maskers during phoneme labeling are needed to test
this possibility.

We used behavioral slopes to index listener categorization strategy.
Controversy exists regarding whether the slope measure of a sigmoidal
identification function truly reflects listener strategy or rather represents
internal noise due to perceptual uncertainty (Kapnoula et al., 2017;
McMurray, 2022). That is, a shallower identification function could
theoretically index either a more gradient listener or a noisier responder.
Kapnoula et al. (2017) and Bidelman et al. (2024) both demonstrated
that slopes calculated from VAS responses did not reflect response noise
(i.e., sensory noise internal to the listener). Similarly, we found that
estimates of perceptual noise via response variance were not correlated
with behavioral slopes. This suggests that slopes during VAS labeling are
a veridical measure of listeners’ categorization strategy independent of
sensory noise. If categorization slopes reflected internal noise in the
decision instead of the categoricity in judgment—as suggested by Kap-
noula et al. (2017) and colleagues —then less noisy responders (i.e.,
those with steeper slopes) should theoretically be more successful in SIN
perception.® On the contrary, we actually find the opposite pattern: a
positive correlation between QuickSIN scores and behavioral slopes.
This reinforces the notion that more continuous/gradient categorizers,
not noisier responders, per se, are more skilled SIN listeners.

If gradient listeners are more attentive in phoneme labeling as sug-
gested by our behavioral RTs, they may also be more attentive in SIN
tasks, perhaps at least partially accounting for their observed benefits in
QuickSIN comprehension. However, we find this explanation unlikely
since sustained attention does not necessarily predict QuickSIN and
cocktail party streaming performance (Bidelman & Yoo, 2020). While
attention may mediate the relationship between listening strategy and
SINperception, future studies are needed to understand their indepen-
dent contributions.

3.3. Speech-ERPs are modulated by task and noise

Our electrophysiological data showed that P2 evoked by otherwise
identical speech stimuli was modulated depending on whether listeners
were performing 2AFC or VAS labeling. This suggests that the neural
encoding and early sensory representations for speech are altered by
task demands. P2 amplitudes were reduced with noise, supporting prior
work demonstrating reduction in P2 with background noise (Billings
et al., 2009; Gustafson et al., 2019; Koerner & Zhang, 2015; Papesh

3 This is not to say that “external” and “internal” noise have isomorphic ef-
fects on perception. The former is an exogenous property governed by SNR of
the acoustic stimulus whereas the latter reflects endogenous, sensory noise of
the observer. However, as noted by Kapnoula et al. (2017), noisier responders
should have less precise internalized speech representations leading to diffi-
culties in speech-in-noise perception. However, this is not what we find in the
current data. Noisier phoneme labeling, per se, was not correlated with
QuickSIN scores.
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et al., 2015). Interestingly, we observed larger responses in the VAS
condition compared to the 2AFC condition. To our knowledge, this is the
first study to demonstrate changes in the auditory-sensory ERPs with
changes in post-perceptual task structure.

Listeners have access to both categorical and continuous cues
simultaneously which can be used differently with varying task de-
mands, as evidenced by RTs (Pisoni & Tash, 1974), eye tracking
(Clayards et al., 2008; McMurray et al., 2018), and MRI studies (Fuhr-
meister & Myers, 2021). Some tasks, including the 2AFC identification
task used here, may rely only on a categorical or phonetic listening
mode, while other tasks may require additional access to a more
continuous or acoustic listening mode. Because the VAS task allows for a
more continuous rating than the 2AFC task, it is reasonable to assume
that listeners might use both categorical and continuous information
simultaneously to form their responses. During VAS judgments, more
neural resources might be recruited to allow access to both types of
information, resulting in larger ERP amplitudes. While Toscano et al.
(2018) demonstrated that gradient cues are represented earlier in the
ERP time course (~N1) than categorical representations (~P2), Sarrett
et al. (2020) suggested gradiency is encoded on a longer time scale,
spanning that of the latency window used here. Moreover, the P2 is not
solely a response to exogenous acoustics, but an early endogenous
response indexing speech discrimination (Alain et al., 2010; Ben-David
et al., 2011), auditory object identification (Ross et al., 2013), and
category representation (Bidelman et al., 2020; Bidelman et al., 2013).
Thus, it is not surprising that P2 changed with task demands, as the
response reflects categorical (perceptual) and continuous (acoustic)
components. Still, a novel finding is that these early auditory responses
beginning at ~ 150 ms are influenced by post-perceptual mechanisms
that initiate the motor response much later in time (400-800 ms).

Topographies from our P2 latency window appeared more posterior
than canonical P2 topographies. Our latency window was long enough
to capture noise-related shifts in latency which may have contributed to
their peak activations not restricted to the vertex. Additionally, we used
an active task during ERP recording, which may have resulted in other
contributions to P2 aside from stimulus encoding. Prior work in speech
categorization has demonstrated similar posterior activation and “post-
P2” activity relating to perception rather than acoustic information
(Bidelman et al., 2013; Bidelman and Alain, 2015a; Bidelman et al.,
2020). This post-P2 activity may reflect matching a stimulus to a pho-
netic memory template (Bidelman and Alain 2015b) or attentional
reorienting (perhaps a P3-like response) during an active task (Knight
et al.,, 1989). Because these processes recruit other neural regions
including medial temporal lobe and superior temporal association
cortices near parietal lobe (Alain et al., 2001; Dykstra et al., 2016), the
resulting topographies are more posterior than a purely sensory P2.

As expected, P2 latencies were longer in noisy than clean conditions
across both tasks. Noise-related prolongation of the P2 is likely due to
decreased neural synchrony due to masking noise (Billings et al., 2009;
Kaplan-Neeman et al., 2006; Whiting et al., 1998). However, these la-
tency effects were more prominent in the VAS compared to 2AFC con-
dition. It is unlikely this reflects mere differences in speed of the motor
response during VAS labeling since P2 effects were substantially earlier
(600-800 ms) than listeners’ RTs. Instead, stronger noise-related
changes in VAS may reflect disproportionately augmented sensory
effort when performing identification in noise during a graded (VAS) vs.
binary (2AFC) task (Bidelman & Walker, 2017; Crowley & Colrain,
2004; Picton & Hillyard, 1974).

More critically, we found that noise-related shifts in ERP latency
were behaviorally relevant; smaller latency prolongations were
observed for more gradient compared to discrete listeners. This finding
supports the notion that making use of continuous cues to decode
ambiguous speech is advantageous, as neural timing is less disturbed by
noise among more continuous listeners. It is possible that listeners who
weigh continuous information more heavily when making perceptual
decisions experience less change in stimulus ambiguity. Alternatively,
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and by the logic above, more gradient listeners may also experience
reduced attentional load in the presence of noise, accounting for the
smaller changes we find in their ERPs.

3.4. Gradient listeners have stronger neural activation in | STG

Source reconstruction revealed that the P2 effects were attributed to
early activation in left-lateralized auditory brain regions. Notably, more
gradient listeners had stronger neural activations in left STG. Prior work
has shown that activation in the |STG is greater than that in the gSTG
during speech perception (Ramos Nunez et al., 2020; Turkeltaub &
Branch Coslett, 2010). This left > right asymmetry is largely consistent
with theories of brain lateralization (Hickok & Poeppel, 2007) and
hemispheric differences in categorization which suggest speech labeling
is processed dominantly by the left hemisphere and music labeling by
the right (Mankel et al., 2022; Zatorre et al., 1992). Additionally, larger
STG responses in more graded listening could reflect increased
engagement of working memory resources that help maintain and
refresh the neural trace of acoustic-sensory information of the speech
signal prior to labeling. Indeed, stronger sustained activity within left
(but not right) auditory cortex is observed under more demanding
auditory working memory loads as listeners retain verbal sounds in
memory (Bidelman et al., 2021; Kumar et al., 2016). Conceivably, the
leftward bias in STG source activations we find for more gradient
listening could reflect heavier retention of continuous acoustic infor-
mation in the auditory sensory-memory buffer prior to assigning a
category label.

Our results also parallel similar findings of stronger and earlier re-
sponses in (left) auditory cortex that have been associated with
increased attention during speech perception (Hugdahl et al., 2003;
Wong et al., 2008) and verbal working memory (Bidelman et al., 2021).
The larger and faster responses we observed corresponding with more
gradient listening may be at least partially attributable to increased
attention among this subset of listeners. This finding along with the
slower behavioral RTs among more gradient listeners suggests that
gradient listening may be a more effortful process that requires greater
sustained auditory attention and/or working memory.

Non-auditory regions such as inferior frontal gyrus (IFG) have been
shown to predict behavioral performance in categorization tasks
(Bidelman & Walker, 2019; Golestani & Zatorre, 2004; Lee et al., 2012;
Meyers et al., 2008). While we therefore expected to find IFG involve-
ment, the association between behavioral and neural measures was
instead restricted to canonical auditory brain regions (1 STG). Behavioral
tasks such as those used here inherently employ both sensory and
decision-making processes. Studies suggest a functional distinction be-
tween the two operations whereby activity in auditory cortical regions
(including STG) maps onto sound identification (sensory process), while
inferior frontal regions map onto reaction time (decision-making pro-
cess) (Binder et al., 2004; Du et al., 2014). Our findings are consistent
with these functional distinctions. Activation of ;STG was correlated
with a measure of precision (i.e., behavioral slope) rather than speed of
speech identification. As such, we infer that how a signal is encoded at
the level of auditory cortex may predict the degree of categorical
perception a listener experiences. In support of this notion, we have
shown that neural representations for speech in auditory cortex reor-
ganize to take on more abstract, categorical organization with increased
listening experience of the individual (Bidelman & Walker, 2019). Thus,
it is possible that continuous feature coding in auditory temporal cortex
is initially more effective in supporting speech sound identification
(present study) but that over time, intensive auditory or language
experience causes it to re-organize (Guenther et al., 2004) and begin
supporting abstract phonetic representations for speech in and of itself
(Bidelman & Lee, 2015; Bidelman & Walker, 2019; Chang et al., 2010).
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4. Conclusions

We examined brain and behavioral links between two fundamental
operations in speech perception: categorization and speech-in-noise
listening skills. ERPs revealed task-dependent changes in early neural
responses starting around 150 ms that differentiated more categorical
from more gradient listeners. More gradient listeners had better SIN
comprehension scores, more resilience to noise-related degradation in
speech encoding, and stronger neural responses in | STG than their more
discrete/categorical listening peers. While a more gradient listening
mode was beneficial in multiple domains here, whether our findings
extend to more realistic listening environments remains to be investi-
gated. Listeners may adapt their strategies on the fly in real world sit-
uations, switching strategies to adapt to changes in signals. Different
task structures using more complex stimuli such as sentences or spatially
separated streams may find different utility for the gradient strategy.
Categorization and SIN deficits are common hallmarks of a variety of
auditory-based disorders (Cunningham et al., 2001; Dole et al., 2012;
Dole et al., 2014; Lagacé et al., 2010; Putter-Katz et al., 2008; Warrier
et al., 2004). Therefore, documenting associations between these skills
may provide a linking hypothesis to understand certain communication
deficits (Calcus et al., 2016). Future work should examine how a
gradient listening strategy might be fortified in listeners with poor SIN
comprehension via auditory training and similar rehabilitation tools.

5. Experimental procedures
5.1. Participants

Our sample included N=20 English-speaking young adults (19-30
years old, 10 female/10 male) with 17.5 + 2.4 years of education and
8.7 + 8.0 years of self-reported formal music training. Years of musical
training did not correlate with listening strategy measures or SIN per-
formance (all ps > 0.05). Participants all had normal hearing (<25 dB
HL; 250-8000 Hz octave frequencies) and were mostly right-handed (73
% =+ 30 %; Edinburgh Handedness Inventory; Oldfield, 1971). Partici-
pants provided written informed consent in accordance with a protocol
approved by the Institutional Review Board at Indiana University and
were paid $10 an hour for their time.

5.2. Stimuli and task

Prior to EEG testing, listeners completed the QuickSIN assessment
(Killion et al., 2004) to measure individual SIN comprehension abilities.
Sentences were presented binaurally over headphones. The average of
scores from two lists of QuickSIN sentences was used to determine a
listener’s dB SNR loss, reflecting the SNR threshold required for 50
%-word recall.

For the EEG experiment, stimuli consisted of 5 synthetic vowel
sounds along a continuum from /u/ to /a/ changing in first formant
frequency (F1) (Bidelman et al., 2020; Bidelman et al., 2013). Tokens
were sampled from evenly spaced points along a continuum changing F1
linearly from 430 Hz to 730 Hz (Fig. 8A). Tokens had identical FO (150
Hz), F2 (1090 Hz), and F3 (2350 Hz). Tokens were 100 ms in duration
gated with 10 ms ramps. Stimuli were presented using MATLAB (The
MathWorks, Natick; MA, USA) coupled to a TDT RZ6 (Tucker-Davis
Technologies, Alachua, FL, USA) signal processor at 75 dB SPL binau-
rally over shielded insert headphones (ER-2; Etymotic Research).

Vowel stimuli were presented in one of two noise conditions: clean
and noise (—2.5 dB SNR). We selected this SNR based on previous
findings showing speech categorization is resilient to noise down to ~
0 dB SNR (Bidelman et al., 2020) and pilot testing, that confirmed —2.5
dB SNR hindered speech perception while still maintaining categorical
identification. Based on prior work, we used a speech-shaped noise
based on the long-term power spectrum (LTPS) of the vowel continuum
rather than using multi-talker babble which makes the task too difficult
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Fig. 8. Stimuli and task design. (A) Stimulus spectrograms. F1 was changed from 430 to 730 Hz to produce an acoustic—phonetic continuum from “oo” to “ah”. Color
scale represents the spectral level relative to full scale. Stimuli were presented at 75 dB SPL during the task. (B) Visual analog scale shown to participants during VAS
task blocks. Participants were asked to click on the scale to report what they heard.

(Bidelman et al., 2020). Noise was presented continuously throughout
the noise block so that it was not time-locked to the stimulus presenta-
tion (Alain et al., 2012; Bidelman & Howell, 2016).

During each block, listeners heard 150 presentations of each token
and were asked to identify the vowel they heard as quickly and accu-
rately as possible using either a (i) 2 alternative-forced choice (2AFC)
binary key press or (ii) visual analog scale (VAS) response. 2AFC and
VAS tasks were run in separate blocks but used otherwise identical
stimuli; only the task paradigm differed. The VAS paradigm required
participants to click a point along a continuous visual scale with end-
points labeled “00” and “ah” to report their percept (Fig. 8B). Use of the
entire analog scale was encouraged. Following listeners’ behavioral
response, the interstimulus interval (ISI) was jittered randomly between
800 and 1000 ms (20 ms steps, uniform distribution) to avoid rhythmic
entrainment of the EEG and the anticipation of subsequent stimuli. In
total, there were 4 conditions: 2AFC/VAS in clean/noise. Block order
was counter-balanced between participants using a Latin square.

5.3. Behavioral data analysis

To analyze the behavioral responses, we computed the identification
curve slopes for each condition, computed as the rise/run change in
%-labeling between tokens straddling the midpoint category boundary
(i.e., vw2, vw4). Steeper slopes are indicative of more categorical/
discrete listening. To provide another quantitative measure of listener
strategy, we also used the distribution of VAS responses to calculate
Hartigan’s dip statistic, a number that quantifies how multimodal a
distribution is (Hartigan & Hartigan, 1985). Higher dip statistic values
indicate a more bimodal distribution, representative of a more discrete
response strategy (Bidelman et al., 2024). Behavioral speech labeling
speeds (i.e., reaction times, RTs) were computed as listeners’ median
response latency across trials for a given condition. RTs outside
250-2500 ms were deemed outliers (e.g., fast guesses, lapses of atten-
tion) and were excluded from the analysis (Bidelman et al., 2020;
Bidelman et al., 2013).

5.4. EEG recording and data processing

During each block of behavioral tasks, we recorded high density EEG
using 64-channel Ag/AgCl electrodes located at 10-10 positions on the
scalp (Oostenveld & Praamstra, 2001). We used Neuroscan Curry 9
software and SynAmps RT Amplifiers (Compumedics Neuroscan, Char-
lotte, NC) to digitize recordings at 500 Hz. Data preprocessing was then
performed in BESA Research 7.1 (BESA, GmbH). During recording, the
EEG was referenced to an electrode located 1 cm behind Cz. Recordings

were later re-referenced to a common average reference. Single elec-
trodes on the outer canthi of the eyes and the superior and inferior orbit
recorded eye movements. We used principal component analysis to
spatially correct ocular artifacts (Lins et al., 1993; Picton et al., 2000;
Wallstrom et al., 2004). Additional epochs > 150 pV were rejected as
artifacts. EEGs were then bandpass filtered from 2 to 30 Hz (zero-phase
filters, 48 dB/octave slope). We chose to high-pass filter at 2 Hz to
minimize contributions of low-frequency motor potentials since our two
tasks required different movements for responses. After filtering, re-
cordings were epoched (—200-800 ms), baselined, and ensemble aver-
aged across trials to generate ERPs for each token per noise and task
condition.

5.5. ERP analysis

To reduce the dimensionality of the electrode-level data, ERPs were
quantified using 5 electrode clusters (Carter et al., 2022). We averaged
activity from adjacent electrodes within each cluster area on the scalp:
front left (AF3, F3, F1), front right (AF4, F2, F4), left temporal (FT7, FC5,
FC3, T7, C5, C3, TP7, CP5, CP3), right temporal (FC4, FC6, FT8, C4, C6,
T8, CP4, CP6, TP8), and center (FC1, FCz, FC2, C1, Cz, C2). ERPs were
quantified in peak latency and amplitude in the time window of the P2
(140-320 ms). We chose to analyze the P2 peak because it occurs in the
time course of the ERP when speech categories fully emerge in the brain
and it is sensitive to degraded speech perception skills (Bidelman et al.,
2020; Bidelman & Lee, 2015; Bidelman et al., 2013; Bidelman & Walker,
2017; Ross et al., 2013). In contrast, earlier peaks in the ERP (i.e., N1)
typically reflect gradient differences in acoustics that may or may not be
related to listeners’ actual categorical perception of the signal (Bidelman
et al., 2013; Toscano et al., 2018; Toscano et al., 2010). This window
was based on visual inspection of the grand average waveform and
ensured we captured both noise- and task-related related shifts in P2
latency (Bidelman et al., 2020) (see Figs. 4-5).

5.6. Statistical analysis

For behavioral data and ERPs, we used linear mixed model ANOVAs
(R; Ime4 package; version 1.1-31) to test differences in outcome vari-
ables (slope, dip statistic, RT, P2 amplitude, P2 latency). Multiple
comparisons were corrected using Tukey-adjusted contrasts with an
overall o = 0.05. Vowel, task, and noise conditions were fixed effects and
subjects served as a random effect. We used Pearson’s correlations to
characterize behavior-behavior and brain-behavior relationships. Effect
sizes are reported as partial eta squared (113) and degrees of freedom
were calculated using Satterthwaite’s method.
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5.7. Source analysis

We used Classical Low Resolution Electromagnetic Tomography
Analysis Recursively Applied (CLARA) [BESA® Research (v7.1)]
(Iordanov et al., 2016; Iordanov et al., 2014; Scherg et al., 2019) with a
4-shell ellipsoidal head model (conductivities of 0.33 [brain], 0.33
[scalp], 0.0042 [bone], and 1.00 [cerebrospinal fluid] (Berg & Scherg,
1994) to determine the intracerebral sources that account for contin-
uous vs. discrete listening strategies in speech categorization (e.g., Alain
et al., 2023; Bidelman et al., 2018; Carter et al., 2022). Source images
were computed for endpoint (vwl/vw5) tokens within the 140-320 ms
(~P2 wave) analysis window, where task and noise effects were
maximal in the scalp ERPs (see Figs. 4-5). CLARA models the inverse
solution as a large collection of elementary dipoles distributed over
nodes on a mesh of the cortical volume. The algorithm estimates the
total variance of the scalp data and applies a smoothness constraint to
ensure current changes minimally between adjacent brain regions
(Michel et al., 2004; Picton et al., 1999). CLARA renders more focal
source images by iteratively reducing the source space during repeated
estimations. On each iteration (x2), a spatially smoothed LORETA so-
lution (Pascual-Marqui et al., 2002) was recomputed and voxels below a
10 % max amplitude threshold were removed. This provided a spatial
weighting term for each voxel on the subsequent step. Two iterations
were used with a voxel size of 7 mm in Talairach space and regulari-
zation (parameter accounting for noise) set to 0.01 % singular value
decomposition. Source activations were visualized on BESA’s adult
brain template (Richards et al., 2016), providing a distributed image
describing the P2 activation across the entire brain volume.

We used cluster-based permutation tests (Maris & Oostenveld, 2007)
implemented in BESA Statistics (2.1) to examine correlations between
the neural source and behavior measures and identify anatomical lo-
cations within the full-brain volume that predicted listeners’ degree of
categorical hearing (see Fig. 7A). For each voxel, a Pearson’s correlation
was computed between neural (CLARA source activations) and behav-
ioral (identification slopes) responses. Statistical maps were corrected
for multiple comparisons across space by building voxel clusters that
control the familywise error rate via a Monte-Carlo resampling tech-
nique (Maris & Oostenveld, 2007). We used an alpha level of a = 0.001
and N=1000 permutations for cluster building. This more stringent
alpha level allowed for separation from nearby sources. To better visu-
alize the brain-behavior relations, we then extracted peak CLARA acti-
vations and latencies from each significant cluster in the brain volume
and regressed these values against listeners’ behavioral identification
slopes (see Fig. 7C, D).
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