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Abstract: Background: Auditory steady-state responses (ASSRs) are sustained potentials
used to assess the physiological integrity of the auditory pathway and objectively estimate
hearing thresholds. ASSRs are typically analyzed using statistical procedures to remove the
subjective bias of human operators. Knowing when to terminate signal averaging in ASSR
testing is critical for making efficient clinical decisions and obtaining high-quality data
in empirical research. Here, we report on stimulus-specific (frequency, level) properties
and operating ranges of a novel ASSR detection metric based on mutual information (MI).
Methods: ASSRs were measured in n = 10 normal-hearing listeners exposed to various
stimuli varying in modulation rate (40, 80 Hz) and level (80–20 dB SPL). Results: MI-
based classifiers applied to ASSR recordings showed that the accuracy of ASSR detection
ranged from ~75 to 99% and was better for 40 compared to 80 Hz responses and for higher
compared to lower stimulus levels. Receiver operating characteristics (ROCs) were used
to establish normative ranges for MI for reliable ASSR detection across levels and rates
(MI = 0.9–1.6). Relative to current statistics for ASSR identification (F-test), MI was a more
efficient metric for determining the stopping criterion for signal averaging. Conclusions:
Our results confirm that MI can be applied across a broad range of ASSR stimuli and might
offer improvements to conventional objective techniques for ASSR detection.

Keywords: auditory evoked potentials (AEPs); auditory steady-state response (ASSR);
evoked potential classification; F-test; objective audiometry

1. Introduction
Auditory steady-state responses (ASSRs) are sustained evoked potentials typically

elicited by amplitude or frequency modulated signals. ASSRs offer a rapid physiological
assessment of hearing function and can be used to estimate full audiogram thresholds
simultaneously in both ears [1–3]. ASSRs are preferred over other electrophysiological
measures (e.g., auditory brainstem response, ABR) because response detection is based on
a statistical comparison between signal and noise power in the evoked potential average
rather than human waveform inspection [1,4–6]. This objectivity is beneficial as it avoids
subjective operator interpretation and bias in determining the presence/absence of a
response and the quality of the auditory evoked potential (AEP) recording [6–8].
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Current approaches to analyzing ASSRs typically involve frequency domain measures
where a statistic is applied to the response spectrum in order to determine the signifi-
cance of the signal’s amplitude relative to the surrounding noise floor [1,4–6]. Several
statistics have been proposed in the literature including the F-test, magnitude-squared
coherence (MSC) [4,9], circular T2 statistic [10], Fcric [11], or Fmp statistic implemented in
the Interacoustics-Eclipse system (https://tinyurl.com/28r8s4ry; Accessed 25 February
2025). In all cases, these statistics become more powerful with an increasing number of
trials. As such, a stopping rule can be applied when a criterion value or significance level is
achieved (e.g., p < 0.05). Such metrics are currently available in several commercial AEP
systems. However, it remains unclear if these are the most optimal statistics for characteriz-
ing sustained AEPs. Arguably, metrics like the F-test are somewhat limited because they
are usable only on specific features of the stimulus (e.g., power at the modulation frequency,
fm). Consequently, these metrics cannot be broadly applied to sustained AEPs elicited by
more complex sounds (e.g., multi-frequency, time-varying stimuli) that have proven more
useful in characterizing central disorders of the auditory nervous system [2,12–15]. Novel
statistical approaches might offer higher sensitivity and/or flexibility for detecting ASSRs
and other sustained AEPs.

To this end, we began developing a novel statistical method for detecting sustained au-
ditory potentials based on mutual information (MI) [8], a metric adopted from information
theory and image processing (for review, see (for review, see [16]). The aim of our approach
is to compare the spectrographic representations of the stimulus signal to that of the neural
response [8]. While promising, our previous investigations were only proof of concept,
testing MI using only a single suprathreshold stimulus. Thus, it remains unclear if MI can
be more broadly applied to detect ASSRs elicited under a range of stimulus parameters
including different modulation rates and levels. Furthermore, the criterion threshold for
MI we used previously was estimated via computational modeling [8]. Thus, it is not
clear from our previous studies whether this is the most appropriate criterion for detecting
ASSRs evoked by different stimulus levels and rates or if it was idiosyncratic to the one
stimulus in our prior report. New normative data reported here allowed us to address these
open questions and characterize ranges for the MI metric based on its performance (e.g.,
sensitivity/specificity) in detecting a wider variety of ASSR responses. Understanding the
performance of MI detection across different stimulus settings is critical if the response is
to be eventually used for objective audiometry [1–3].

The present study aimed to more fully characterize the performance of an MI-based
classifier for detecting ASSRs across a broader range of stimulus parameters. We assessed
ASSR detection for responses recorded at different modulation frequencies (40 Hz, 80 Hz)
to assess the metric’s dependence on stimulus modulation rate (and thus the putative site
of the ASSR generator) (e.g., cortex vs. brainstem: [17]). Additionally, we parametrically
varied the stimulus level across a large dynamic range (80–20 dB SPL) to evaluate the level
dependence of MI in detecting ASSRs. This latter manipulation is important given the
application of ASSRs for threshold estimation and objective audiometry [5,18]. Receiver
operating characteristics (ROCs) allowed us to characterize how different choices of MI cri-
terion values affect ASSR detection and thus allowed us to establish a normative operating
range for the metric and guide its future implementation. Lastly, we evaluated the efficacy
of the MI algorithm by comparing its application as a stopping criterion for signal ongoing
averaging against other “gold-standard” statistical approaches (i.e., F-test) [1].

https://tinyurl.com/28r8s4ry
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2. Materials and Methods
2.1. Participants

Ten young, normal-hearing listeners (5 male, 5 female; age: 23.7 ± 1.94 years) partici-
pated in the experiment This sample size is consistent with the sample sizes of other recent
ASSR signal detection studies on normal-hearing listeners [11,19]. However, it is important
to note that for the development of a statistical classifier which aims to segregate signal
from noise, it is the unique number of datapoints that is most critical. In this regard, the
aggregate data we use for statistical analysis and characterizing the parameter space of MI
(e.g., see Figure 2) included a substantial (100,000 = 10 subjects × 4 levels × 2500 sweeps)
number of unique data epochs. All participants had normal hearing thresholds (≤15 dB HL,
octave frequencies 250–8000 Hz) bilaterally, were right handed [20], and were native speak-
ers of American English. Participants gave written informed consent in compliance with
a protocol approved by the University of Memphis Institutional Review Board (Protocol
#2370).

2.2. Stimuli

ASSRs were evoked by sinusoidal amplitude-modulated (SAM) tones with a carrier
frequency (fc) of 1000 Hz and modulation frequencies (fm) of 40 Hz or 80 Hz (100% mod-
ulation depth). Stimulus duration was 200 ms (including 5 ms onset/offset ramping to
minimize onset components) following our previous report [8,21]. Stimuli were delivered
binaurally via ER-2 insert earphones (Etymotic Research) at levels of 80, 60, 40, and 20 dB
SPL using alternating polarity. In addition to these stimulus conditions, sham recordings
were obtained by presenting stimuli with the inserts removed from participants’ ears [8,22].
Shams provided baseline, control recordings of “neural noise” [8,21].

2.3. Electrophysiological Recordings

ASSR recording procedures and stimuli were similar to those in our previous
report [21]. EEGs were recorded between Ag/AgCl disc electrodes placed on the
scalp at the high forehead by the hairline, referenced to linked mastoids (A1/A2)
(mid-forehead = ground). Interelectrode impedances were ≤5 kΩ. Continuous EEG sig-
nals were digitized at 10 kHz (SynAmps RT amplifiers; Compumedics Neuroscan). EEGs
were windowed [0–200 ms], filtered (30–1000 Hz), and averaged in the time domain to
obtain ASSR waveforms for each stimulus. Listeners heard 2500 repetitions of the stim-
ulus token presented at an interstimulus interval of 5 ms. Post-processing and analyses
were performed using custom routines coded in MATLAB® (v2024a; The MathWorks, Inc.,
Natick, MA, USA).

2.4. Mutual Information (MI) Detection Metric

We computed the mutual information (MI) between spectrographic representations of
the stimulus and the neural response to index the degree to which neural responses captured
spectrotemporal details of the acoustic input. Details of this metric are fully elaborated
in our previous study’s bench testing MI for AEP detection [8,21]. MI is a dimensionless
quantity (measured in bits) which measures the degree of linear and nonlinear dependence
between two signals (A and B). In our specific case where A and B are two spectrograms,
MI computes the dependence or similarity between the two images [16]. Effectively, the
resulting value describes the similarity between the ASSR and stimulus spectrograms. We
use this value to decide, statistically speaking, if the ASSR response is present or absent in
the EEG recording.

MI was computed between the stimulus and each neural response spectrogram, allow-
ing us to assess the degree to which neural responses reflect spectrotemporal properties of
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the evoking stimulus [8]. Spectrograms were computed using the “spectrogram” routine
in MATLAB and converted to grayscale images. This routine computed a 214 point FFT
in consecutive 50 ms segments (Hamming windowed) computed every 3 ms [8] (Window
length changes the spectral resolution of the resulting spectrogram, which could impact
the computation of MI when comparing the stimulus and response spectrograms. In initial
analyses, we varied the sliding window length parametrically from 25 ms to 100 ms. How-
ever, in pilot testing, we found no appreciable changes in the accuracy of response detection
for different window lengths. Consequently, we adopted a 50 ms window, equivalent to
a spectral resolution of 20 Hz. This is appropriate for resolving both 40 Hz and 80 Hz
components and is consistent with our previous studies [8,15].). Time waveforms were
zero-padded to minimize edge effects and ensure that spectrograms ran to the end of
the signal’s duration. Identical parameters were used to compute both the stimulus and
response spectrograms. SAM tone stimulus spectrograms were squared prior to computing
MI to account for the half-wave rectification that is applied during the cochlear transduction
process [21,23,24].

2.5. Receiver Operating Characteristics (ROCs) for the MI Classifier

After determining a criterion (i.e., decision rule) for MI statistically from our data (see
the Results Section), we then applied this threshold (MIθ) as a binary classifier to ASSR
and sham recordings. Recordings yielding MI ≥ MIθ were classified as neural responses,
whereas recordings with MI < MIθ were considered noise (i.e., no response) [8]. Classifier
performance was evaluated by computing standard signal detection theory and ROC
metrics including true and false positive rates. ROC analyses also allowed us to determine
the acceptable range of MI values that yielded above-chance detection of ASSRs from
noise. For a given value of MI, sensitivity was computed as the percentage of actual ASSR
recordings correctly identified; false positive rate was computed as the percentage of sham
recordings (i.e., “neural noise”) erroneously classified as a biological ASSR response. ROC
curves were constructed for each modulation rate (40 Hz, 80 Hz) and level (80–20 dB SPL)
to characterize the overall performance of the MI classifier across the different stimulus
settings.

2.6. Comparison of MI to F-Test

To test the efficiency of MI as a stopping criterion for signal averaging, we computed
MI on a sweep-by-sweep basis as accumulating trials were added to the ongoing ASSR
average. This was repeated separately for each level and modulation rate. Similarly,
we compared the “online” development of MI against the well-known F-test [1,4] used
in commercial ASSR recording systems (e.g., Bio-logic MASTER II; Intelligent Hearing
Systems SmartEP-ASSR). While other detection metrics are available (e.g., MSC), we have
previously shown that MI is most comparable in detection performance to the F-test (MSC
performs more poorly) [21] and thus represents a stringent benchmark comparison. The
underlying assumption of the F-test approach is that in the spectral domain, ASSR energy
should be localized to a frequency bin near the stimulus modulation frequency; activity
in adjacent bins contains only random noise, with zero mean and variance distributed
equally across the noise bins [1]. The ratio of signal power to the sum of the powers in
N adjacent frequency bins is distributed according to an F distribution with 2 and 2N-1
degrees of freedom [1]. In the current study, we used N = 12 frequency bins surrounding
the target signal. We then compared our measured F-ratio against the critical F-value with
2 and 23 degrees of freedom and obtained a corresponding p-value for response detection.
Traces yielding p < 0.05 were deemed to have response energy at the fm frequency that was
significantly above the surrounding noise floor. Comparison between the MI and F-test
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statistical metrics allowed us to relate their performance and determine differences in their
stopping rule for signal averaging, i.e., the number of trials where each measure detected
the presence of ASSRs.

3. Results
3.1. ASSR Responses

ASSR time waveforms and spectra are shown for actual and sham recordings in
Figure 1. The spectra illustrate response energy at the modulation rates (40 Hz or 80 Hz)
and their upper harmonics for ASSR but not sham recordings (gray trace). These findings
confirm that ASSRs contained robust phase-locked neural activity, whereas sham recordings
contained no ASSR response (nor stimulus artifact) and are thus suitable for use as “catch
trials” in testing our MI detection metric [21]. As expected, ASSR amplitudes also decreased
with decreasing stimulus level and were only weakly above the noise floor at 20 dB SPL.
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Figure 1. Auditory steady-state response (ASSR) waveforms and spectra elicited by 40 Hz (left) and
80 Hz (right) SAM tones (fc = 1 kHz) showing the level dependence of responses. ASSR waveforms
show phase locking at the stimulus modulation rate and first few harmonics which progressively
weakens with decreasing level, approaching the noise floor at ~20 dB SPL. Gray traces, sham recording
in which the earphone was removed from the ear canal (i.e., EEG noise floor). ▼ = response energy at
the fm.

3.2. Performance and ROC Characteristics of MI Classifier

Examples of MI computed between the 40 Hz SAM stimulus and responses are shown
for different stimulus levels in Figure 2A. MI decreases at lower stimulus levels, indicating
weaker dependence between the stimulus and ASSR response. At high intensities (80 dB
SPL), ASSR spectrograms show strong dependence on the evoking stimulus spectrogram
and MI is large. Nearer the threshold (20 dB SPL), ASSRs are dominated by background
EEG noise, implying that the averaged neural response shares less information with the
stimulus, which consequently yields a low MI (Note that non-zero MI is observed even
for sham recordings, suggesting some shared time–frequency information between the
stimulus and neural noise. We attribute this to myogenic noise of the EEG which is strong
for frequencies <40 Hz. The SAM tone stimulus also has significant low-frequency energy
below <40 Hz. Thus, even in the absence of a stimulus, spectral energy below <40 Hz in
both the stimulus and “neural noise” can produce non-zero MI. This can be taken as the
floor of the metric.).
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Figure 2. Characterizing the quality of ASSR recordings using mutual information (MI). (A) (left)
A rectified stimulus spectrogram for a 40 Hz SAM tone stimulus. (right) Spectrograms of ASSRs
recorded for a descending-level series. The inset of each panel indicates the MI computed between
each response spectrogram and that of the stimulus [8,21]. With decreasing level, time–frequency
representations of the neural ASSRs show less correspondence with those of the stimulus, as indicated
by decreasing values of MI. (B) Signal detection theory analysis to determine an optimal criterion
(MIθ) for the MI response classifier. Shown here is the distribution (probability density functions) of
MI values for 40 and 80 Hz ASSRs (pooled across stimulus levels) and sham recordings. MI is always
larger for true vs. sham recordings. The criterion MIθ = 0.93 segregates 95% of suprathreshold ASSRs
from sham noise. From a classifier perspective, recordings containing MI > MIθ (=0.93) are predicted
to contain a true neural ASSR response, whereas recordings with MI < MIθ are considered noise (no
response).

Our first aim was to statistically determine a decision rule for MI for use in detecting
ASSR responses. To this end, signal detection theory was used to determine an optimal
criterion (MIθ) for the MI classifier from EEG recordings. Figure 2B shows the probability
density functions of MI values for all trials and subjects for the 40 Hz and 80 Hz ASSR
(pooling across levels) and sham recordings. On average, MI values range from ~1 to 1.5
across all stimulus combinations. All ASSRs were, to varying degrees, linearly separable
along the MI decision axis compared to sham recordings, which elicited weak MI. In the
current study, MIθ = 0.93 was taken as the criterion value because 95% of the data (i.e.,
MIs for ASSR responses) fell above this threshold; the false positive rate was 5%. From a
signal detection standpoint, this implies that any arbitrary recording for which MI > MIθ

will be predicted to contain a true ASSR response, whereas recordings with MI < MIθ are
considered noise (no response). MIθ = 0.93 was determined to be the optimal decision rule
for ASSR detection, though we show later that a range of values around MI = 1 are also
sufficient.

Classifier performance of the MI metric is shown in Figure 3 as ROC curves. Each
panel represents the true (sensitivity) vs. false positive (1-specificity) rate for distinguishing
ASSRs from sham recordings at different stimulus levels. The bowing of the ROC curve
toward the upper left corner is indicative of robust sensitivity in segregating signal from
noise (i.e., higher d-prime). Each individual datapoint represents the true/false positive
rate for a different choice of MIθ . A criterion located at the maximum curvature of the
ROC curve represents the optimal decision rule for classification, one which produces the
highest sensitivity while minimizing false positive detection (i.e., erroneously labeling a
noise recording as an ASSR).
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Figure 3. Receiver operating characteristic (ROC) curves for ASSRs evoked by different modulation
rates and levels. ROC curves measure tradeoff in sensitivity and specificity with different MI cutoffs
(marked by different points along each curve). Individual points denote the true positive (sensitivity)
vs. false positive (1-specificity) rates for various values of MI in distinguishing true from sham
recordings based on 2500 sweeps. Dotted lines correspond with chance performance (i.e., d′ = 0).
With an optimal value of MI for signal–noise segregation (MIθ = 0.93; see Figure 2), classification
accuracy (AUC) is 99% for 40 Hz ASSRs at 80 dB SPL and 90% for 80 Hz ASSRs. Classification
accuracy is better for low (40 Hz) compared to high (80 Hz) modulation rates and high- vs. low-level
stimuli.

With decreasing levels, ASSRs become more difficult to segregate from EEG noise, as
evident by the ROC curves approaching chance performance (dotted lines) at 20 dB SPL.
Overall classification accuracy for the 40 Hz responses is near ceiling (99%) at 80 dB SPL, as
indicated by the area under the curve (AUC) [25]. Classification accuracy weakens with
decreasing level, indicating that discriminating ASSRs from noise is more difficult nearer
to the threshold. Nevertheless, classification remains high (74%) for the 40 Hz responses at
20 dB SPL. Accuracy in detecting 80 Hz responses is 10–15% poorer compared to 40 Hz
responses but remains well above chance (73%) even at the lowest intensity tested. These
operating characteristics demonstrate that the MI between a stimulus and neural response
provides an objective means for detecting ASSRs across various levels and modulation
rates.

3.3. Acceptable Ranges of MI for ASSR Detection

While the statistically derived criterion MIθ = 0.93 represents the optimal threshold
for detecting ASSRs (5% false positive), our ROC characterizations reveal that there is a
range of acceptable MI values around a convenient MI ≈ 1 that could be used to reliably
detect neural responses. Figure 4 shows the overall accuracy of detecting ASSRs from
shams for different choices of MI for 40 Hz (Figure 4A) and 80 Hz (Figure 4B) responses.
Each family of functions shows the overall accuracy in correctly distinguishing ASSRs from
noise using different MI cutoffs. The reduction in peak accuracy across curves indicates a
level-dependent effect in classification accuracy. Consistent with ROC results, MI is less
robust at detecting ASSRs evoked by weaker stimulus levels. Nevertheless, there is a range
of MI values that allow for above-chance detection of the response (Figure 4C).
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modulation rates. (A,B) Level-dependent classification accuracy for the 40 Hz (A) and 80 Hz (B)
responses. Each family of functions shows the overall accuracy in correctly detecting ASSRs from
noise using different MI cutoffs. (C) Range of acceptable MI values for classifying 40 and 80 Hz
ASSRs above chance levels. Ranges were extracted from the width of each level-dependent accuracy
function shown in panels A and B. Color scheme, same as in panel A. (D) Max accuracy for detecting
ASSRs and the corresponding MI. Max accuracy was extracted from the peak of each level-dependent
accuracy function of panel A and B. Note that some points for the 80 Hz responses overlap. (E) Overall
accuracy across stimulus levels and modulation rates. Accuracies were extracted from ROC functions
(e.g., Figure 3) as the area under the curve (AUC). (F) Sensitivity of the MI metric for a fixed false
positive rate of 5%. Response detection accuracy and sensitivity are better for 40 Hz compared to
80 Hz responses, decrease with decreasing stimulus level, but remain well above chance. Error bars =
−95% CI.

MI ranges were extracted from the width of each level-dependent accuracy function
shown in panels A and B and show the acceptable range of MI cutoff thresholds that allow
for above-chance detection (Figure 4C). For the 40 Hz response, acceptable values of MI
range from 0.9 to 1.6 for high-level (80 dB) stimuli. This allowable range is reduced with
decreasing level; 40 Hz responses are detectable at 20 dB with MI values between 0.9 and
1.3. Similar results were obtained for the 80 Hz responses, although the acceptable MI
range was reduced at both high- (0.9–1.4) and low-level (0.9–1.2) stimuli.

The corresponding 95% confidence intervals for MI across levels were similar for
40 Hz ([0.99 1.14]) and 80 Hz responses ([0.99 1.13]). Notably, both 95% CIs included 1.0,
suggesting that a simple value of MI = 1 could be applied to ASSRs for response detection.
MI = 1 is also convenient in terms of its information–theoretic interpretation: MI = 1 means
that ASSR detection is achieved when “1 bit” of information is transferred (is shared)
between the stimulus and EEG response spectrograms.

MI values corresponding to maximum classification accuracy (i.e., peak of functions in
Figure 4A,B) are shown in Figure 4D. Maximum accuracy is obtained with MI ≈ 1 (cf. MIθ).
Collectively, these results help provide a normative tolerance range and optimal choice of
MI values for using it as an ASSR classifier.

Typically, the performance of a diagnostic or detection method is evaluated by consid-
ering the sensitivity and specificity of the measure. However, it is also useful to evaluate
a diagnostic’s true positive rate (i.e., sensitivity) for a fixed false positive rate (e.g., 5%).
Figure 4E,F show the overall accuracy of the MI metric (AUC) and sensitivity at a fixed 5%
false positive rate (i.e., 95% specificity) across stimulus levels and modulation rates. For
40 Hz ASSRs, performance ranges from 100/95% sensitivity/specificity at 80 dB SPL to
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20/95% sensitivity/specificity at 20 dB SPL. For 80 Hz ASSRs, performance ranges from
55/95% sensitivity/specificity at 80 dB SPL to 20/95% sensitivity/specificity at 20 dB SPL.

3.4. MI as a Criterion for Terminating Signal Averaging

In addition to detection, an objective metric should be suitable as a stopping crite-
rion for online signal averaging. Figure 5 shows the growth in MI and the conventional
F-test [1,4] metric during ASSR recordings as a function of the number of trials in the
ongoing average. In this figure, we set the MI threshold to the convenient value of MI = 1,
the approximate midpoint of the metric’s 95% CI (see Section 3.3). In general, each metric
improves with additional trials and asymptotes as the running AEP stabilizes. Response
growth is faster for 40 Hz relative to 80 Hz responses and at higher (80 dB SPL) compared
to lower (20 dB SPL) intensities. For high-level 40 Hz ASSRs, responses exceed the MI and
F-test stopping criteria (MI = 1.0; F-test: p = 0.05) by ~50 and 750 sweeps, respectively, cor-
responding to <1 min (MI) vs. 2.5 min (F-test) of recording time. More extended recording
durations (sweeps) are needed for detecting low-level ASSRs and 80 Hz responses, which
sometimes do not achieve the criterion thresholds (e.g., Figure 5D). As an expected control,
MI remains invariant sweep to sweep for noise sham recordings.

Audiol. Res. 2025, 15, x FOR PEER REVIEW 9 of 14 
 

 

F-test stopping criteria (MI = 1.0; F-test: p = 0.05) by ~50 and 750 sweeps, respectively, 
corresponding to <1 min (MI) vs. 2.5 min (F-test) of recording time. More extended record-
ing durations (sweeps) are needed for detecting low-level ASSRs and 80 Hz responses, 
which sometimes do not achieve the criterion thresholds (e.g., Figure 5D). As an expected 
control, MI remains invariant sweep to sweep for noise sham recordings. 

 

Figure 5. A comparison of the growth in MI with the F-test during online ASSR recording. Sweep-
by-sweep ASSR detection based on MI for the 40 Hz (A) and 80 Hz (B) responses at each level. (C,D) 
Improvements in ASSR detection using the conventional F-test procedure [1]. Dotted lines denote 
the criterion threshold for ASSR detection under each metric (MI = 1.0; F-test: p < 0.05). The abscissa 
shows both the number of sweeps and corresponding recording time for online ASSR averaging. 
Shading = ±1 s.e.m. 

We conducted a mixed-model ANOVA (lme4 package in R [26]) on the stopping 
sweep number to assess differences in the recording time needed under each metric. The 
fixed effects were rate, level, and test type (subject served as a random effect). Not all 
recordings reached the stopping criteria, especially for low-level, 80 Hz stimuli (e.g., Fig-
ure 5D). These missing observations were coded as 2500, the maximum number of sweeps 
in our recording session. The ANOVA revealed a significant three-way rate x level x test 
interaction [F(3, 144) = 2.53, p = 0.059, 𝜂௣ଶ = 0.05] (all lower-order two-way and one-way 
effects were also significant) (Figure 6). Tukey-corrected multiple contrasts revealed that 
the interaction was attributed to better performance of MI over the F-test in all but the 40 
Hz, 80 dB SPL stimulus condition. These results indicate that MI outperformed the F-test 
across decreasing stimulus levels and modulation rates and detected the ASSR response 
in a fewer number of trials. 

Figure 5. A comparison of the growth in MI with the F-test during online ASSR recording. Sweep-
by-sweep ASSR detection based on MI for the 40 Hz (A) and 80 Hz (B) responses at each level.
(C,D) Improvements in ASSR detection using the conventional F-test procedure [1]. Dotted lines
denote the criterion threshold for ASSR detection under each metric (MI = 1.0; F-test: p < 0.05).
The abscissa shows both the number of sweeps and corresponding recording time for online ASSR
averaging. Shading = ±1 s.e.m.

We conducted a mixed-model ANOVA (lme4 package in R [26]) on the stopping sweep
number to assess differences in the recording time needed under each metric. The fixed
effects were rate, level, and test type (subject served as a random effect). Not all recordings
reached the stopping criteria, especially for low-level, 80 Hz stimuli (e.g., Figure 5D).
These missing observations were coded as 2500, the maximum number of sweeps in
our recording session. The ANOVA revealed a significant three-way rate x level x test
interaction [F(3, 144) = 2.53, p = 0.059, η2

p = 0.05] (all lower-order two-way and one-way
effects were also significant) (Figure 6). Tukey-corrected multiple contrasts revealed that
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the interaction was attributed to better performance of MI over the F-test in all but the
40 Hz, 80 dB SPL stimulus condition. These results indicate that MI outperformed the F-test
across decreasing stimulus levels and modulation rates and detected the ASSR response in
a fewer number of trials.
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4. Discussion
There have been few developments in the ASSR literature over the past decade outside

of industry manufacturers [27]. The majority of independent research efforts have focused
on simultaneously recording the response with other evoked potentials (e.g., brainstem +
cortical AEPs) [28–31], efficient protocol development and the use of the response as a diag-
nostic in certain clinical populations [32,33], or optimizing stimulus selection for enhancing
the response [34]—the so-called “Next-generation” ASSR using chirp sounds [35–37].

Here, we report on the tolerance and operating range of an objective statistical ap-
proach to detect ASSRs based on mutual information (MI) [8]. The technique quantifies
the quality of ASSRs by considering the linear and nonlinear dependences between the
rich time–frequency information provided by the signal and response spectrograms. Our
previous report’s bench testing of the MI classifier demonstrates its superiority over “gold-
standard” (i.e., visual subjective) judgments of human observers [8] and other objective
techniques for ASSR detection (e.g., MSC, F-test) [21]. Here, we extend these previous
findings by showing that MI can be used for response detection across a broader range
of ASSR-evoking stimuli including different combinations of levels and modulation rates
that are used in the audiological clinic. Given that the MI tracks with level, it can be used
to guide threshold searches. We also found that MI yields higher efficiency in detecting
ASSRs in shorter recording times than conventional statistical algorithms [21]. The present
results reaffirm the multiple benefits of MI and suggest that the statistic might be a useful
tool to reduce valuable recording time during auditory electrophysical testing in the clinic.

We found that the overall performance accuracy in distinguishing true neurobiological
responses from noise using our MI metric was >90% for high-level stimuli (80 dB SPL)
and remained well above chance (73%) for levels nearer to auditory threshold (20 dB SPL).
More importantly, our results establish a normative tolerance range for MI criterion values
(MI = 0.9–1.6) that allow for robust detection of ASSRs across different modulation rates
and intensities. However, as determined by ROC analyses, the most optimal classification
of ASSRs is achieved with the criterion MIθ = 0.93. Though for the sake of convenience,
MI = 1.0 would suffice in robustly identifying ASSRs from EEG noise (Figure 4), such that
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“1 bit” of information must be transferred between the stimulus and EEG response to
confirm that an ASSR is present. Lastly, we showed that MI increases monotonically with
an increasing number of stimulus presentations (i.e., trials) and can, for some stimulus
conditions, detect ASSRs in a fewer number of trials compared to conventional ASSR
detection procedures, i.e., the F-test (i.e., F-test; [1,4]).

The more comprehensive stimulus set used in this study compared to our previous
reports [8,21] allowed for a more complete characterization of MI’s effectiveness as an
ASSR classifier. Several observations are worth noting regarding the metric’s performance
and limits. First, while MI can successfully detect the presence of ASSRs at different
modulation rates (Figure 3), we found that overall accuracy was generally higher for 40 Hz
compared to 80 Hz responses. The higher classification for 40 Hz compared to 80 Hz
suggests that MI-based detection may be more sensitive to cortical rather than subcortical
auditory phase-locked activity [17,38]. Critically, however, MI detection was still well
above chance in all cases (Figure 4) and overall testing time was reduced compared to the
F-test (Figure 6). The more optimal performance at 40 vs. 80 Hz is a common bias in the
ASSR literature [39] and is likely due to the higher signal-to-noise ratios and more robust
amplitudes of ASSRs with low vs. high-frequency modulation rates, as shown in the present
study in Figure 2 [15,40,41]. Indeed, by early adolescence, the 40 Hz response is nearly twice
the amplitude of the 80 Hz response [42]. Moreover, unlike their 80 Hz counterparts, 40 Hz
responses are highly dependent on subject state: low fm responses are reliably recorded
only in awake individuals [41,43,44] and are eradicated with anesthesia [38,40]. Despite
this typical low-frequency bias in the ASSR, we found that the overall testing time was
reduced using MI compared to the F-test (Figure 6). Our results therefore suggest that MI
could offer a means to collect sustained ASSR/AEP data in a more time-optimized manner
and reduce valuable recording time in the clinic (present study; [8,21]).

Secondly, we found that MI has a smaller useable range (Figure 4C) and lower accu-
racy/sensitivity (Figure 4D) for low-level, 80 Hz stimuli. This would limit the metric’s
application for threshold testing [45], particularly in infants [46]. Additionally, neural
generators of ASSRs are dependent on the frequency of the stimulus modulation rate; high
frequencies (80 Hz) evoke brainstem generators, whereas low frequencies (40 Hz) recruit
cortical sources [17,38]. Thus, the fact that we observe superior performance for 40 Hz
stimuli across the board implies that MI might be more useful for monitoring cortical rather
than subcortical neural activity.

Lastly, sweep-by-sweep tracking of MI confirmed the metric’s efficiency as a stopping
rule for ASSR signal averaging. In this regard, we found that MI was able to detect 40 Hz
ASSRs within ~1 min, corresponding to <50 stimulus trials. In contrast, using the F-test
required considerably more stimulus presentations; ~750 sweeps (2.5 min of testing) were
needed to detect the 40 Hz response at 80 dB SPL and ~1500 sweeps at 60 dB SPL. Moreover,
our 80 Hz ASSRs never achieved the F-test criterion, indicating that more than 2500 trials
would be needed to detect those responses. While our data show that MI can offer a more
efficient stopping rule for terminating averaging compared to the F-test, from a practical
standpoint, this improvement in testing time (1–2 min) is probably negligible. Nevertheless,
our data indicate that under certain stimulus conditions, MI can detect ASSRs in half the
number of trials (i.e., twice as efficient) as the gold-standard F-test.

More broadly, MI is an information–theoretic measure that is “distribution free” and
therefore requires fewer assumptions than other statistical approaches (e.g., F-test) which
utilize parametric (distribution-based) statistics. This is another benefit as auditory re-
sponses tend to be highly nonlinear. Thus, MI might offer an improvement upon older
and other more recent ASSR detection statistics for use in objective audiometry [11,19].
However, unlike other metrics, MI can be easily applied to time-varying signals beyond the
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ASSR [8]. Thus, in addition to clinical application as a stopping criterion for ASSR audiome-
try and threshold testing, it can be readily applied to electrophysiological responses like the
speech-evoked FFR [8]. This would be another major clinical benefit as FFRs have become
popular in assessing complex auditory function including central auditory processing
disorders [12], aging [47,48], cognitive decline [13], and learning-related plasticity [49,50].

5. Conclusions
The application of the MI metric to electrical response audiometry and ASSRs may

provide clinicians and researchers with a more robust tool to objectively evaluate the pres-
ence and quality of sustained auditory AEPs, including fast testing time. The calculation
of MI could be easily incorporated into commercially available AEP systems similar to
other statistical detection metrics (e.g., F-test, Fsp, Fmp, MSC) already available in clinical
hardware (MASTER system, Interacoustic Eclipse, Intelligent Hearing Systems). Imple-
mentation would require relatively straightforward signal processing to first compute the
time–frequency spectrograms of the (i) stimulus and (ii) response epoch followed by MI
between i and ii. MI can then be tracked in a running manner during online averaging
as trials are accumulated (e.g., as in Figure 5). Signal averaging could then be terminated
immediately once the criterion value (established here: M ≈ 1) is exceeded, saving valuable
clinic time and guess work. Still, future studies are warranted to assess the performance
of MI in clinical populations (e.g., infants, hearing loss) where testing times can be much
longer than in listeners with normal hearing [51].
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